energie + DAS MITTELSTAND | SPEZIAL

AUSGABE 2025

INDUSTRIELLE KERNSCHMELZE

Drohendes Verbrenner-Aus gefährdet Wohlstand, Arbeitsplätze und Exportmacht

FLÜSSIGE MOLEKÜLE GARANTIEREN MOBILITÄT

E-Fuels und HVO für einen CO₂-neutralen Straßenverkehr

"Der Kraftstoff ist

der Schlüssel beim Klimaschutz"

DR. OLAF TOEDTER (KIT) ÜBER DEN BEITRAG

ERNEUERBARER KRAFTSTOFFE ZUM KLIMASCHUTZ

"Wir bekennen uns klar zum Automobilstandort Deutschland und seinen Arbeitsplätzen. Dabei setzen wir auf Technologieoffenheit."

"Wir wollen eine zeitnahe Umsetzung der Erneuerbare-Energien-Richtlinie III (RED III), erhöhen die nationale Treibhausgasminderungsquote (THG-Quote) und nutzen die möglichen Spielräume der EU-Vorgaben. Dabei wollen wir den Einsatz alternativer Kraftstoffe, inklusive Biokraftstoffe, voranbringen."

Aus dem Koalitionsvertrag von CDU, CSU und SPD zur Bildung einer neuen Bundesregierung vom 9. April 2025.

INHALTSVERZEICHNIS

4	E-Fuels und HVO	Erneuerbare Kraftstoffe wirken beim Klima sofort
8	Grüne Moleküle	Strom allein reicht für eine Energiewende nicht
10	Interview	Prof. Christian Küchen über die Rolle grüner Moleküle
14	HVO im Praxistest	Ein Jahr nach Zulassung zeigt HVO100 saubere Ergebnisse
16	Interview	Dr. Monika Griefahn: "Ohne E-Fuels verschenken wir Potenzial"
19	Markthochlauf	Leuchtturmprojekte holen E-Fuels aus der Nische
20	Verbrennungsmotor	Der Antrieb mit flüssigen Kraftstoffen bleibt unverzichtbar
23	Die Energie-Kolumne	Prof. Justus Haucap zur Bedeutung des Verbrennungsmotors
24	Interview	Für Dr. Olaf Toedter greift der Tailpipe-Ansatz zu kurz
26	E-Fuels-Mythen	Irrtum oder Wahrheit: E-Fuels im Faktencheck
29	CO ₂ -Flottenziele	Am Auspuff gemessen - an der Wirklichkeit vorbei
30	Seltene Erden	Der All-Electric-Ansatz schafft neue Abhängigkeiten
32	Globale Wege	Defossilisierung gelingt anderen Ländern ohne Verbrennerverbot

IHRE MEINUNG IST UNS WICHTIG!

SCHREIBEN SIE UNS

Ob Kritik, Anregung oder Themenidee – wir haben ein offenes Ohr für Sie. E-Mail an info@uniti.de

IMPRESSUM

REDAKTIONSBEIRAT

Henning Krumrey (Vorsitz), Elmar Kühn, Dirk Arne Kuhrt, Dominik Hellriegel, Alexander Vorbau

CHEFREDAKTION

Anja Kummerow

REDAKTION

Justus Haucap, Alexander Vorbau

REDAKTIONSANSCHRIFT

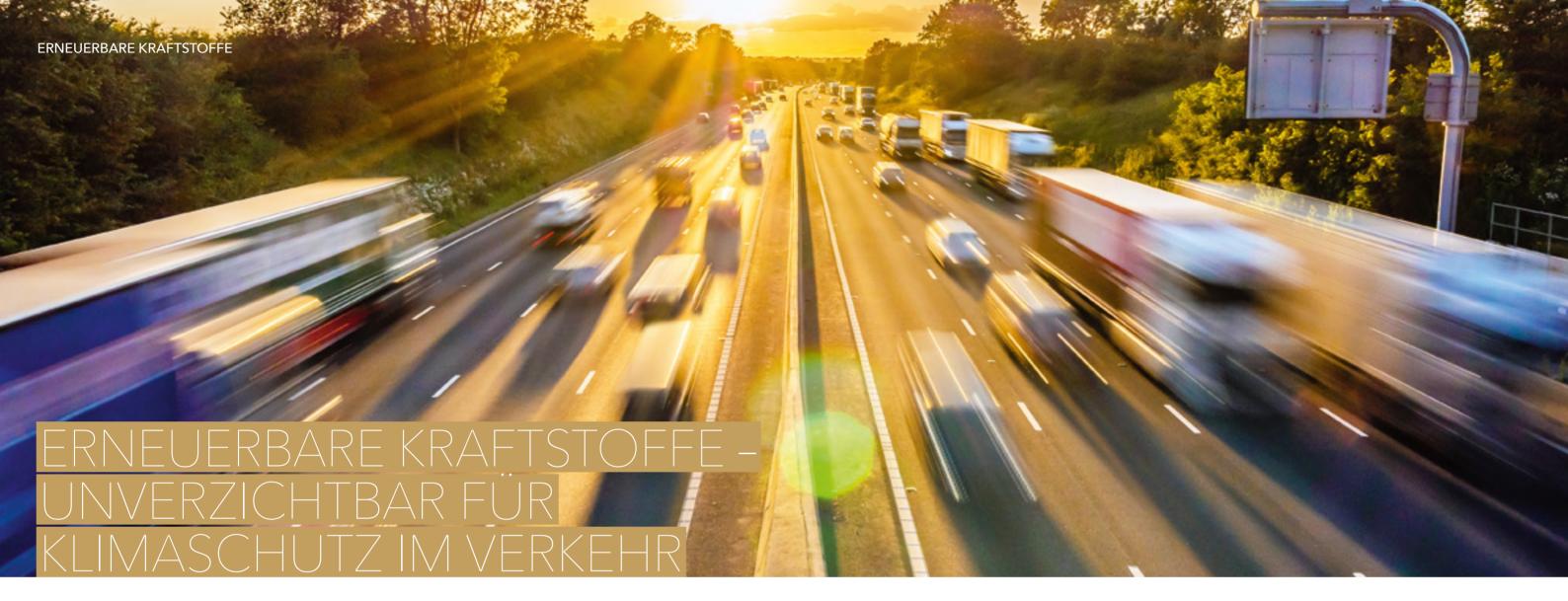
kraeftig GmbH Wiesenstraße 32 91126 Schwabach www.kraeftig.com

PRODUKTION

kraeftig GmbH

DESIGN Verena Inhof (Ltg.)

DRUCK


be1druckt GmbH Emmericher Str. 10 D-90411 Nürnberg

ADRESSÄNDERUNGEN

Geschäftsstelle UNITI
Tel. 030/75 54 14-300
Fax 030/75 54 14-366
E-Mail: info@uniti.de
ISSN 2195-4445
Der Inhalt der Beiträge gibt
nicht in jedem Fall die Meinung des Herausgebers
wieder. Alle Beiträge sind
urheberrechtlich geschützt.
Änderungen behalten wir
uns vor.

HERAUSGEBER

UNITI Bundesverband EnergieMittelstand e. V. Jägerstraße 6, 10117 Berlin Elmar Kühn (V. i. S. d. P.)

E-FUELS UND HVO SIND DER SCHLÜSSEL ZUR DEFOSSILISIERUNG VON BESTANDSFLOTTE UND NEUWAGEN

Mit erneuerbaren Kraftstoffen wie E-Fuels und HVO könnten die rund 1,4 Milliarden Verbrennerfahrzeuge weltweit in die Klimaschutzbemühungen einbezogen werden – ganz ohne technische Anpassungen. Auch zukünftige Neufahrzeuge wären damit CO₂-neutral unterwegs.

rneuerbare Kraftstoffe gelten als der entscheidende Hebel, um den Straßenverkehr CO2neutral zu machen, denn nur sie ermöglichen es, nicht nur zukünftige Neufahrzeuge, sondern auch die bestehende Fahrzeugflotte zu defossilisieren. Vor allem grünstrombasierte und biogene Kraftstoffe stehen dabei im Mittelpunkt, denn diese sind wie E-Fuels marktreif oder wie HVO sogar schon an vielen Tankstellen verfügbar. Beide Kraftstoffe eint, dass sie flüssig sind, in herkömmlichen Motoren sowohl in Reinform als auch als Beimischung genutzt werden können, und über die vorhandene Infrastruktur aus Tanklagern, Logistikwegen und Tankstellen verteilt werden. Sie zeigen, dass Klimaschutz nicht zwingend einen radikalen Technikaustausch erfordert.

MEHR WERT

Bei der Herstellung von E-Fuels fallen wertvolle Koppelprodukte an – etwa für die Chemieindustrie.

E-Fuels: Kraftstoffe aus Grünstrom

E-Fuels sind im wahrsten Sinne des Wortes eine saubere Lösung, um bestehende Verbrennerfahrzeuge weiternutzen zu können und gleichzeitig die Umwelt zu schonen. Die Idee dahinter ist keineswegs neu: Schon in den 1920er-Jahren entwickelten Franz Fischer und Hans Tropsch am Kaiser-Wilhelm-Institut ein Verfahren, um aus Kohle flüssige Kraftstoffe zu gewinnen - das bekannte Fischer-Tropsch-Verfahren, das technisch bestens ausgereift ist. Damals galt die Technologie als eine Antwort auf Rohstoffknappheit, heute könnte sie einen Königsweg im Kampf gegen den Klimawandel darstellen. Modernisiert und kombiniert mit erneuerbaren Energiequellen wird das technisch gleiche Grundprinzip genutzt, um aus Wasserstoff und Kohlenstoffdioxid CO₂-neutrale Kraftstoffe herzustellen.

Wind und Sonne in den Tank

Der Herstellungsprozess beginnt dort, wo Wind und Sonne besonders reichlich vorhanden sind – also etwa an Küsten mit konstantem Wind, in Wüstenregionen mit weit über 3.000 Sonnenstunden im Jahr oder an Standorten, die im besten Fall sogar beides miteinander kombinieren. Genau hier entsteht der Grünstrom, der in Elektrolyseuren Wasser in Wasserstoff und Sauerstoff spaltet. Dieser Wasserstoff wird anschließend mit ${\rm CO}_2$ in Reaktion gebracht, das zuvor aus Industrieabgasen abgeschieden oder direkt aus der Atmosphäre entnommen wurde.

In vielen Anlagen kommt dann die Fischer-Tropsch-Synthese zum Einsatz, bei der langkettige Kohlenwasserstoffe gebildet werden – ein synthetisches Rohöl, auch E-Crude genannt –, das anschließend in Raffinerien zu E-Benzin, E-Diesel, E-Heizöl oder E-Kerosin weiterverarbeitet wird.

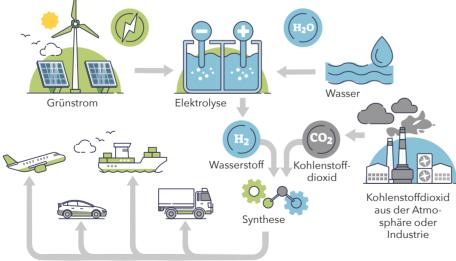
Neben Kraft-, Treib- und Brennstoffen fallen dabei wertvolle Koppelprodukte an, etwa Sauerstoff aus der Elektrolyse, der in der Metallverarbeitung oder in der Medizin genutzt wird, sowie Wachse und Paraffine, die für die Chemie-, Grundstoff- und Pharmaindustrie unverzichthar sind Noch sind E-Fuels in der Herstellung teurer als herkömmliche Kraftstoffe, weil die Produktionsmengen der bislang existierenden Versuchs- und Laboranlagen gering sind. Eine Studie des Beratungsunternehmens Frontier Economics aus 2024 zeigt jedoch, dass die aktuell noch als eher hoch eingeschätzten Produktionskosten für E-Fuels mit zunehmenden Erfahrungswerten, technologischem Fortschritt und einer positiven Skalierung über die Zeit deutlich absinken. Bei idealen regulativen Rahmenbedingungen für einen schnellen Produktionshochlauf könnten E-Fuels heutige fossile Kraftstoffe demnach bereits ab dem Jahr 2037 (E-Benzin) bzw. 2043 (E-Diesel) europaweit vollständig und bezahlbar ersetzen.

Dafür braucht es allerdings einen ambitionierten Produktionshochlauf: größere Anlagen, verlässliche Abnahmemengen, internationale Energiepartnerschaften und politische Rahmenbedingungen, die den Markteinstieg unterstützen. Die weltweiten Potenziale sind enorm: Laut "PtX-Global Atlas" des Fraunhofer IEE erlauben sonnen- und windreiche Regionen wie Nordafrika, Australien, Südamerika oder Teile Asiens mehr als doppelt so viele Volllaststunden wie vergleichbare Anlagen in Mitteleuropa. Dort könnten hunderttausende

Weltweit sind rund 1,4 Milliarden Verbrennerfahrzeuge unterwegs. Erneuerbare Kraftstoffe könnten sie sofort klimafreundlich machen.

ERNEUERBARE KRAFTSTOFFE

Ohne technische Anpassung können E-Fuels an bestehenden Tankstellen angeboten werden.


H₂O Wasser

Terawattstunden erneuerbarer Energien in Form von grünem Strom erzeugt und in grüne Moleküle umgewandelt werden, die sich exportieren ließen – genug, um den heutigen globalen Bedarf an fossilen Mineral-ölprodukten vollständig zu decken. Ein besonderer Vorteil von E-Fuels: Sie wirken bei Neufahrzeugen und im Fahrzeugbestand. Der Pkw-Bestand in der EU beträgt rund 246 Millionen Fahrzeuge, knapp zehn Millionen Neuzulassungen sind jährlich zu verzeichnen. Das heißt, schon eine Beimischung von vier Prozent E-Fuels in herkömmliche Kraftstoffe würde bilanziell alle Neu-

Die Technologie besteht den Praxistest

fahrzeuge eines Jahrgangs CO₂-neutral stellen.

Dass die Technologie längst praxistauglich ist, zeigen konkrete Projekte: In Chile produziert die Pilotanlage Haru Oni von HIF Global bereits synthetisches Benzin, das Porsche in Europa einsetzt. In Frankfurt am Main hat das Karlsruher Start-up INERATEC im Frühsommer 2025 seine erste Großanlage eingeweiht, die E-Diesel und E-Kerosin in industriellem Maßstab herstellt. Weitere Projekte sind weltweit in Planung, werden zum Teil aber durch bestehende regulative Hürden für einen breiten E-Fuels-Produktionshochlauf bislang ausgebremst. Investoren in den Markthochlauf von E-Fuels

E-Fuels - Kraftstoffe aus grünem Strom

Aus Wind- und Sonnenstrom wird Wasser per Elektrolyse in Wasserstoff und Sauerstoff gespalten. Der Wasserstoff reagiert anschließend mit CO₂, das aus Industrieabgasen oder aus der Luft gewonnen wird. Über Fischer-Tropschoder Methanolsynthese entsteht daraus E-Crude – ein synthetisches Rohöl, das in Raffinerien zu E-Benzin, E-Diesel oder E-Kerosin weiterverarbeitet wird.

müssen die Gewissheit haben, dass eine langfristige und nachhaltig stabile Nachfrage nach erneuerbaren Kraftstoffen besteht. Diese Sicherheit ist derzeit nicht gegeben. So sendet der europäische Gesetzgeber etwa mit einem geplanten pauschalen Verbrennerverbot das Signal aus, dass der Kraftstoffmarkt zukünftig regulatorisch geschrumpft wird. Das schreckt Investoren ab.

HVO - Designerkraftstoff biogenen Ursprungs

Während E-Fuels aus Wasser und CO₂ mittels des Einsatzes von Grünstrom erzeugt werden, wird HVO - Hydrotreated Vegetable Oil, also hydriertes Pflanzenöl - aus ganz anderen, nämlich biogenen Quellen gewonnen. In modernen Anlagen werden vor allem Rest- und Abfallstoffe verarbeitet, etwa Altspeiseöle aus der Gastronomie oder tierische Fette aus der Lebensmittelproduktion - eine Konkurrenz zwischen "Tank und Teller" gibt es bei HVO nicht. Unter hohen Temperaturen und Druck werden die Ausgangsstoffe mit Wasserstoff behandelt, wodurch sich ihre Molekülstruktur verändert. Das Ergebnis ist ein paraffinischer Dieselkraftstoff, der chemisch so rein ist, dass er nahezu Schwefel- sowie aromatenfrei und damit sauber verbrennt. Die Emissionen an Feinstaub und Stickoxiden werden damit deutlich reduziert.

HVO ist keine Zukunftsmusik, sondern schon im Einsatz. In mehreren europäischen Ländern wird es als Reinkraftstoff nach DIN EN 15940 vertrieben, seit 2024 auch im freien Tankstellenverkauf in Deutschland. Busflotten in Großstädten, Speditionen im Fernverkehr und landwirtschaftliche Betriebe, aber auch viele Endverbraucher nutzen ihn bereits - und das, ohne dass technische Anpassungen etwa am Motor notwendig wären. Wie bei E-Fuels lassen sich auch bei HVO bestehende Tankinfrastrukturen und Fahrzeugflotten weiterverwenden, Emissionen im Bestand sofort senken und die Produktion schrittweise hochskalieren. Die Resonanz der Nutzer fällt durchweg positiv aus.

Tallt durchweg positiv aus.

Zusammen bilden E-Fuels und HVO ein schlagkräftiges

Kraftstoff-Duo, dass für die Defossilisierung des Straßenverkehrs unverzichtbar ist. Beide setzen auf bestehende Technik, nutzen vorhandene Vertriebswege und
erschließen globale Erzeugungspotenziale – sei es
durch Strom und CO₂ aus sonnen- und windreichen
Weltregionen oder durch die intelligente Verwertung
von Reststoffen. Das Ziel ist dasselbe: CO₂-neutrale Mobilität, die nicht erst in der fernen Zukunft beginnt, sondern schnell und weltweit sowohl bei Bestandsfahrzeugen als auch bei zukünftigen Neufahrzeugen zur
bezahlbaren Realität werden kann.

Ein besonderer Vorteil von E-Fuels: Sie funktionieren nicht nur bei Neufahrzeugen, sondern auch im Fahrzeugbestand.

2037

könnten E-Fuels bei passenden politischen Rahmenbedingungen fossile Kraftstoffe in Europa bereits vollständig und bezahlbar ersetzen. Bei E-Diesel wäre dies ab 2043 der Fall.

OHNE MOLEKÜLE KEINEWENDE

WARUM STROM ALLEIN NICHT REICHT UND GRÜNE MOLEKÜLE ENTSCHEIDEND SIND FÜR EINE CO2-NEUTRALE ZUKUNFT

Die Energiewende in Deutschland wird bislang vor allem als Stromwende betrachtet, diskutiert und angegangen. Windräder drehen sich auf Hügeln, Solarmodule blitzen auf Dächern, und der Netzausbau sowie der Anteil des Grünstroms am deutschen Strommix sind quasi Dauerthemen in den Medien.

er glaubt, mit einer Steigerung des Grünstromanteils allein ist die Energiewende vollendet, schaut nur auf einen Ausschnitt der Realität. Beim Endenergieverbrauch steht Strom in der Öffentlichkeit meist im Mittelpunkt - obwohl er nur rund 20 Prozent des Endenergieverbrauchs ausmacht. Laut der Arbeitsgemeinschaft Energiebilanzen (AGEB) werden rund 80 Prozent des Endenergieverbrauchs in Deutschland von Molekülen in Form von Gas, Öl, Kraftstoffen, Prozesswärme oder chemischen Grundstoffen gedeckt. Wer CO₂-Neutralität ernst meint, muss das Molekül ins Zentrum rücken. Es ist der unsichtbare Energieträger, der Industrie, Verkehr, Wohnen und Chemie miteinander verbindet.

Warum grüne Moleküle unverzichtbar sind

Obwohl Moleküle in Form flüssiger oder gasförmiger Energieträger aktuell den größten Teil der deutschen Energieversorgung stellen, finden sie in der Debatte zur Energiewende kaum Beachtung, bemängelt der en2x -Wirtschaftsverband Fuels und Energie e.V. Und nicht nur das. Vielmehr fände gar eine Ausstiegsdebatte statt, die notwendige Investitionen in die Molekülwende sogar noch eher verhindern, warnen die Energieexperten.

Batterien und Direktstrom bilden gute Ergänzungen des molekülbasierten Energieangebots, wenn es um Pkw, Haushalte oder leichte Maschinen geht. Doch Hochöfen, Containerschiffe oder Flugzeuge lassen sich nicht einfach "unter Strom setzen". Sie stoßen hier auf physikalische und wirtschaftliche Grenzen: Die nötigen Energiemengen sind riesig, der Platzbedarf für Speicher enorm, und die Kosten für rein elektrische Lösunkann das Molekül nicht ersetzen - er muss es speisen.

Begrenztes Grünstrom-Potenzial

Selbst in einem Szenario, bei dem eine starke Beschleunigung des Ausbaus der Erneuerbaren Energien auf eine sehr zurückhaltende Stromverbrauchsprognose für Industrie, Verkehr, Gebäude und Haushalte trifft, droht im Jahr 2045 eine energetische Lücke zwischen Stromerzeugung und -verbrauch, so das Ergebnis einer Stromstudie aus 2023 von Frontier Economics.

Die Lücke muss durch Importe geschlossen werden nicht als Elektronen, sondern als Moleküle. Denn Moleküle lassen sich speichern, in Tanks lagern, in Pipelines und Schiffen transportieren und weltweit handeln. Genau diese Eigenschaft macht sie zum Schlüssel der Energieversorgung der Zukunft.

Den Importbedarf Deutschlands beziffern die Experten von Frontier bis 2045 auf rund 1.000 TWh, europaweit auf über 2.500 TWh. Die Studie weist außerdem darauf hin, dass heimischer erneuerbarer Strom gezielt eingesetzt werden muss - bevorzugt in Sektoren, in denen eine Elektrifizierung alternativlos ist (z. B. Beleuchtung, Bahnstrom oder Rechenzentren). Für alle anderen Anwendungen sind CO₂-neutrale Moleküle unverzichtbar, weil sie global günstig produziert, gespeichert und importiert werden können. Nur so lässt sich die Versorgungssicherheit mit klimaneutraler Energie gewährleisten.

Ohne Moleküle läuft kein Schiffsantrieb, kein Düsenflugzeug, keine chemische Reaktion im industriellen Maßstab. Wer Strom erzeugt, braucht Moleküle, um diese Energie speichern und transportieren zu können sowie um sie langfristig nutzbar zu machen - für Wärme, Bewe-

gen liegen oft jenseits jeder Realisierbarkeit. Strom

gung oder industrielle Stoffumwandlungen, Eine Energiewende ohne Moleküle zu denken, hieße, zentrale Teile der Energieversor-

gung auszublenden. Auch die Realität der weltweiten Bestandsflotte von mehr als 1,4 Milliarden Fahrzeugen mit Verbrennungsmotor zeigt: Ohne Moleküle in Form flüssiger Energieträger geht es nicht. Allein in Deutschland sind rund 50 Millionen Verbrennerfahrzeuge auf eine Molekülewende angewiesen, um in den Klimaschutz einbezogen werden zu können.

>70 %

weniger CO₂-Emissionen sind in der Industrie durch

erneuerbare Moleküle

möglich.

Moleküle sind aber nicht nur Energieträger, sondern Rohstoff selbst. Wasserstoff, Ammoniak, Methanol oder Synthesegase sind unentbehrliche Bausteine vieler Produktionsketten. Studien des Fraunhofer-Instituts für Energiewirtschaft und Energiesystemtechnik (Fraunhofer IEE) zeigen, dass ein Einsatz erneuerbarer Moleküle die Emissionen im industriellen Kernbereich massiv senken kann - nicht nur an der Peripherie.

Besonders in der Grundstoffindustrie - Stahl, Chemie, Zement - können erneuerbare Moleküle die CO₂-Emissionen um mehr als 70 Prozent senken. Das Potenzial liegt also im Zentrum der Industrie, nicht in Randanwendungen. Die Plattform molekuelwende-inside.de verdeutlicht: Moleküle sind das Bindeglied zwischen allen Sektoren - sie speichern Energie, machen sie transportfähig und dienen zugleich als Rohstoff.

Unter günstigen Bedingungen könnten die Produktionskosten synthetischer Kraftstoffe langfristig auf rund ein Euro pro Liter sinken. Damit das Realität wird, braucht es jedoch Milliardeninvestitionen. Genau hier

richtung neuer Anlagen und zugleich Unsicherfrage nach CO₂-neutralen Molekülen geben wird, um ein stabiles Geschäftsmodell zu sichern.

Ohne Planungssicherheit keine Investition

Für mittelständische Firmen ist das Molekül keine abstrakte Größe, sondern ein Markt mit viel Potenzial. Vom Anlagenbau für Power-to-X-Anlagen (PtX-Anlagen) über Automatisierungstechnik in Terminals bis hin zu Logistiklösungen für den Molekültransport - überall entstehen entlang der Kette neue Geschäftsfelder, mit großem Potenzial. "Ohne Planungssicherheit keine Investitionen in grüne Moleküle", betont Professor Christian Küchen, Hauptgeschäftsführer von en2x. Investoren würden sonst ihr Kapital in andere Regionen lenken - etwa nach Chile, Australien oder den Nahen Osten, wo erneuerbare Energien im Überschuss vorhanden sind und großskalige Produktion bereits gestartet ist.

Laut dem en2x-Fortschrittsbericht 2025 werden auch nach 2045 mindestens 40 Prozent der heutigen Raffinerieprodukte noch gebraucht - insbesondere für Luftfahrt, Schifffahrt, Chemie und kritische Infrastruktur. Grüne Moleküle sind daher nicht Übergangslösung, sondern strategischer Eckpfeiler einer CO₂-neutralen Industrie. Klar ist zudem: Wenn der Verkehrssektor als großer Nachfragemarkt für erneuerbare Kraftstoffe zukünftig ausfallen sollte, droht dieser strategische Eckpfeiler wegzubrechen, da Raffinerien dann nicht mehr wirtschaftlich zu betreiben wären. Ohne eine Molekülwende würde nicht nur die Energiewende scheitern,

sondern auch der Wirtschaftsstandort wäre bedroht.

liegt die Hürde: hohe CAPEX-Kosten bei der Erheit, ob es in Europa künftig ausreichend Nach-

80%

des Endenergiever-

brauchs in Deutschland stammt aus Molekülen.

des zukünftigen PtX-Bedarfs müssen importiert werden.

tig. Moleküle wie E-Fuels speichern Energie langfristig.

Strom ist flüch-

PROF. CHRISTIAN KÜCHEN IST ÜBERZEUGT, DASS MOLEKÜLE FÜR EINE ECHTE ENERGIEWENDE UNVERZICHTBAR SIND.

Nur gut 20 Prozent unseres Energieverbrauchs decken wir derzeit mit Strom ab, sagt Prof. Christian Küchen, Hauptgeschäftsführer des en2x – Wirtschaftsverbands Fuels und Energie e. V. Er warnt vor einer einseitigen Elektrifizierungsstrategie und fordert bessere Rahmenbedingungen für eine Molekülwende, damit Investitionen in CO₂-neutrale Kraftstoffe und Technologien in Deutschland überhaupt stattfinden können.

Herr Prof. Küchen, Sie weisen darauf hin, dass die Energiewende in Deutschland bislang vor allem als Stromwende verstanden und ausgestaltet wird. Woran machen Sie das fest?

Wir arbeiten seit 30 Jahren daran, den Strom erneuerbar zu produzieren. Zwischenzeitlich war innerhalb der politischen Diskussion sogar von einer "all electric society" als Lösung für die Energiewende die Rede. Die Bedeutung von Molekülen und speziell Kohlenwasserstoffen wurde lange vernachlässigt. Die Kohlenwasserstoffwirtschaft hat die gleiche Bedeutung für die Volkswirtschaft wie die Stahl- oder die Zementindustrie, findet politisch jedoch nicht die entsprechende Anerkennung. Manchmal ist noch immer zu hören, wir müssten nur weg vom Öl und könnten alles elektrifizieren. Doch das stimmt nicht. Wir brauchen Kohlenwasserstoffe nicht bloß als Übergangslösung, sondern für viele Anwendungen auch langfristig. Das heißt: Wir benötigen auch weiterhin eine Energie- und Grundstoffwirtschaft, die die entsprechenden Produkte zur Verfügung stellen kann - durch ein gewisses Maß an Eigenversorgung und mittels Importen.

Kann man mit Blick auf den deutschen Strommix sagen, zu dem Grünstrom bilanziell etwa 60 Prozent beiträgt, dass zumindest die Stromwende auf einem guten Weg ist oder greift diese Betrachtung zu kurz? Dass die verstärkte Elektrifizierung einen wichtigen Beitrag zum Klimaschutz leisten kann und muss, ist zurecht unumstritten. Das betrifft etwa Prozesse in der Industrie oder den Hochlauf von Wärmepumpen und batteriebetriebenen Fahrzeugen. Hier wurden in den vergangenen Jahren gute Fortschritte gemacht, auch beim Ausbau der erneuerbaren Stromerzeugung durch Sonne und Wind. Doch neben dem Klimaschutz gehören auch Versorgungssicherheit und Bezahlbarkeit zum energiepolitischen Zieldreieck. Darauf hat der Monitoringbericht zur Energiewende hingewiesen, den das Bundeswirtschaftsministerium jüngst veröffentlicht hat. Doch nur gut 20 Prozent unseres heutigen Energiebedarfs decken wir derzeit überhaupt mit Strom. Nahezu der gesamte Rest, fast 80 Prozent, sind feste, flüssige und gasförmige Energieträger, also Moleküle. Ein Großteil davon wird heute aus fossilen Rohstoffen wie Erdgas und Mineralöl gewonnen.

Prof. Christian Küchen sagt, dass Mineralöl heute noch immer der wichtigste Energieträger in Deutschland ist.

energie+MITTELSTAND I DAS SPEZIAL

diese Moleküle brauchen wir klimaschonende Alternativen – und damit neben der Stromwende auch eine Molekülwende. Beides steht nicht im Widerspruch, sondern ist die Voraussetzung für erfolgreichen Klimaschutz, den Erhalt von Wirtschaftskraft und eine resiliente Energieversorgung.

Sie mahnen also, dass die Energiewende auch eine Molekülwende beinhalten muss. Welche Rolle spielen Moleküle heute im Energiesektor aber auch für die Wirtschaft generell?

Nur wenige Zahlen: Mineralöl ist heute mit einem Anteil von 37 Prozent noch immer der wichtigste Energieträger in Deutschland - und gerade für den Stra-Benverkehr entscheidend. Allein im heutigen Pkw-Bestand Deutschlands haben 96 Prozent der Fahrzeuge einen Verbrennungsmotor und es werden voraussichtlich noch viele Millionen in den nächsten Jahren dazukommen. Auch wenn der Bestand dieser Fahrzeuge langsam zurückgehen wird, werden hier große Mengen erneuerbarer Kraftstoffe benötigt. Und von den rund 21,6 Millionen Wärmeerzeugern in Gebäuden im gesamten Bundesgebiet sind rund 13,9 Millionen Gasheizungen, rund 4,8 Millionen Ölkessel und ca. 650.000 Flüssiggasheizungen. Darüber hinaus benötigen wir Kohlenwasserstoffe nicht nur als Energieträger, sondern auch für Einsatzstoffe und Rohstoffe, die von der Industrie weiterverarbeitet werden. Als Lieferantin für wichtige Branchen wie die Chemie- und Baustoffindustrie sowie für die Automobilindustrieund den Maschinenbau ist die Kohlenwasserstoffbranche integraler Bestandteil vieler industrieller Wertschöpfungsketten.

Warum kann man die heute noch mehrheitlich fossilen Moleküle im Energiesektor zukünftig nicht einfach durch grüne Elektronen, also Strom aus erneuerbaren Energien, ersetzen?

Durch höhere Effizienz sowie die zunehmende Elektrifizierung der Fahrzeugflotte und der Wärmeversorgung wird der Bedarf zwar zurückgehen, dennoch werden wohl rund die Hälfte, eventuell sogar 60 Prozent des aktuellen Absatzes unserer Branche an Kohlenwasserstoffen auch über 2045 hinaus noch benötigt. Als Energieträger und Rohstoffe bleiben sie überall dort erforderlich, wo eine Elektrifizierung nicht sinnvoll oder nicht möglich ist, zum Beispiel im Flugverkehr und der Schifffahrt. Dauerhaft benötigt werden Kohlenwasserstoffe zudem als Grundstoffe für die industrielle Nutzung. Auch Landmaschinen, Lösch-, Bergungs- und Militärfahrzeuge sowie Notstromaggregate für Krisensituationen werden weiterhin flexible und speicherbare Energieträger in Form von Kohlenwasserstoffen brauchen. Hinzu

Foto: enZx, Getty Images

kommt: In einem auf erneuerbarem, aber fluktuierendem Strom wie aus Sonnen- und Windkraft basierenden Energiesystem werden wir, wenn der Himmel bedeckt ist und der Wind nicht weht, auch im Stromsektor auf gespeicherte Energie in Form von Molekülen zurückgreifen müssen. Das Gleiche gilt für Krisensituationen. Nicht ohne Grund steht auch heute schon flüssige Energie hier zur Verfügung: zum Betrieb von Notstromaggregaten oder als strategische 90-Tage-Reserve im Rahmen der gesetzlichen Erdölbevorratung. Wir dürfen die Erfahrungen in den aktuellen geopolitischen Krisen nicht ausblenden. Gerade im Krisenfall sind flüssige, flexibel einsetzbare Energieträger nicht zu ersetzen. Das gilt für die Verteidigung, aber auch im Inneren. Bei Stromausfall fährt keine Uoder S-Bahn, keine Straßenbahn und auch kein E-Bus.

Wie schreitet der notwendige Markthochlauf für die Molekülwende bislang voran?

Die Situation ist für die Branche derzeit schwierig, die Wettbewerbsfähigkeit der Raffinerien massiv gefährdet. Grund dafür sind die schwierigen Rahmenbedingungen am Wirtschaftsstandort Deutschland. Dazu zählen beispielsweise hohe Strom- und Gaspreise, steigende CO₂-Kosten aus europäischen Regulierungen, hohe Umweltauflagen und ein hoher Bürokratieaufwand. Hier besteht akuter Handlungsbedarf, denn ohne wettbewerbsfähige Kohlenwasserstoff-Branche wird es keine Molekülwende geben. Das Geld für die not-

Allein im heutigen Pkw-Bestand Deutschlands haben 96 Prozent der Fahrzeuge einen Verbrennungsmotor und es werden voraussichtlich noch viele Millionen in den nächsten Jahren dazukommen. Auch wenn der Bestand dieser Fahrzeuge langsam zurückgehen wird, werden hier große Mengen erneuerbarer Kraftstoffe benötigt.

wendige Transformation muss zuvor verdient werden. Das heißt: Die Wiederherstellung international wettbewerbsfähiger Standortbedingungen in Deutschland muss jetzt die oberste Priorität haben. Zudem brauchen wir für Anreize in Zukunftsinvestitionen eine klare Perspektive und geeignete Rahmenbedingungen. Die Transformation der Unternehmen wird nur gelingen, wenn es langfristige Geschäftsmodelle für CO₂-neutrale Lösungen gibt.

Bei welchen Produkten bzw. Produktgruppen schreitet der Markthochlauf besser voran, bei welchen schlechter, und woran liegt das aus Ihrer Sicht?

In Deutschland leisten vor allem Kraft- und Brennstoffe aus Anbaubiomasse wie Raps und Mais sowie Altspeisefette bereits heute im Verkehr und in der Wärmeversorgung relevante Beiträge zum Klimaschutz. So konnten 2023 im Straßenverkehr durch den Einsatz klimaschonender Kraftstoffe, insbesondere konventioneller und fortschrittlicher Biokraftstoffe, rund zwölf Millionen Tonnen CO2 -Äquivalente eingespart werden. Für die Zukunft geht es vor allem um den Einsatz weiterer Rest- und Abfallstoffe, etwa von Stroh- und Holzresten, aber auch Algen. Deren Verarbeitung zu fortschrittlichen Biokraftstoffen erfordert allerdings noch hohe Investitionen in neue Technologien. Das gilt auch für die Produktion von strombasierten Kraftstoffen aus grünem Wasserstoff und CO2. Aufgrund der schwierigen Standortbedingungen erleben wir derzeit

leider, dass viele Zukunftsprojekte abgesagt oder verschoben werden. Das ist bedauerlich, denn die Zeit drängt. Entsprechende Investitionen müssen zeitnah erfolgen, gerade weil der Markthochlauf dieser fortschrittlichen Produkte noch etwas Zeit braucht. Damit diese Investitionen in Deutschland getätigt werden können, muss sich die Bundesregierung zu einer Zukunft der Kohlenwasserstoffindustrie in Deutschland klar bekennen und dies zügig mit wichtigen Weichenstellungen in der Wirtschafts- und Energiepolitik unterlegen.

Welche Rolle spielt die aktuelle Förderlandschaft in Deutschland und der EU, die vor allem auf verpflichtende Mengenquoten setzt?

Die THG-Quote, also Treibhausgasminderungs-Quote, hat sich in der Vergangenheit als ein zentrales Instrument für den Klimaschutz im Straßenverkehr erwiesen, indem sie die Lieferanten von Kraftstoffen verpflichtet, durch verschiedene Maßnahmen die Treibhausgasemissionen im Verkehrssektor zu senken. Durch die Möglichkeit zur Anrechnung von Ladestrom unterstützt sie zusätzlich den Aufbau von Ladeinfrastruktur. Es ist anzuerkennen, dass. Stand heute, alternative Kraftstoffe den wesentlichen Beitrag zur Emissionsminderung leisten. Derzeit steht das Gesetz zur Weiterentwicklung der THG-Quote vor der Verabschiedung. Hier sind gegenüber dem ursprünglichen Entwurf noch Verbesserungen nötig, so zum Beispiel die umfassende Ermöglichung der Mitverarbeitung von biogenen Einsatzstoffen in Raffinerien. Es ist entscheidend, dass deutsche Standorte durch nationales Recht nicht schlechter gestellt werden als Raffinerien in anderen EU-Ländern. Für die Akzeptanz der Energiewende insgesamt - also nicht nur der bisherigen "Stromwende" wird es darauf ankommen, gerade die vergleichsweise günstigen, nachhaltigen Optionen der Treibhausgasminderung nicht zu begrenzen, sondern umfassend anzuerkennen und anzureizen. Denn wenn die Transformation für die Bürgerinnen und Bürger zu teuer wird, wird die Akzeptanz schwinden. Die Erfahrungen zeigen auch, dass gerade für kapitalintensive neue Kraftstofftechnologien die Quotenvorgaben allein als Instrument nicht ausreichen, um die notwendigen Investitionen auszulösen.

Durch welche nationalen und europäischen regulatorischen Maßnahmen könnte die Investitionsbereitschaft in kapitalintensive Anlagen zur Herstellung von Wasserstoff und PtX-Erzeugnissen und damit letztlich von grünen Molekülen gesteigert werden?

Zunächst muss es um die Sicherung deutscher Produktionsstandorte durch international und innereuropäisch wettbewerbsfähige Bedingungen gehen. Dies erfordert insbesondere eine Senkung der Kosten für Energie und CO₂-Emissionen auf ein international wettbewerbsfähiges Niveau und einen grundsätzlichen Abbau von Bürokratie und die Vereinfachung von

Genehmigungsverfahren, aber zum Beispiel auch eine Reform des Emissionshandels ETS 1 für Industrie und Energieversorger zur Lösung der Frage, wie es nach 2039 weitergehen kann. Um Investitionen in die Molekülwende auszulösen, brauchen wir, zusätzlich zu Quoten, eine flankierende Strategie zur Risikominderung für die großen Investitionen. Damit neue Geschäftsmodelle entstehen und solche Projekte "bankable" werden, also grünes Licht für die Finanzierung erhalten, benötigen Investoren die Aussicht auf eine langfristig gesicherte Nachfrage gekoppelt mit einer entsprechenden Zahlungsbereitschaft. Die Sicherung der Nachfrage wäre zum Beispiel durch eine Reform der EU-Flottenreaulierung für Pkw möglich, bei der eine Kategorie von Null-Emissions-Fahrzeugen, die ausschließlich mit zusätzlich zu den Quotenverpflichtungen in Verkehr gebrachten CO₂-neutralen Kraftstoffen (CNF - Carbon Neutral Fuels) machbar. Beim Preis wären langfristige Abnahmeverträge, die in marktwirtschaftlichen Auktionsverfahren ermittelt werden, eine sinnvolle Lösung. Mit dem Ausschreibungs- und Fördermodell von H2Global bzw. der European Hydrogen Bank stehen hier grundsätzlich bereits Instrumente zur Verfügung. Was bislang fehlt, ist eine möglichst haushaltsunabhängige Finanzierung dieser Ausschreibungen. Zusätzlich ist eine Absicherung der Investitionsentscheidungen gegen Änderungen der regulatorischen Rahmenbedingungen durch eine Bestandsschutzregelung ("Grandfathering") erforderlich.

Gibt es Erfahrungsberichte aus globaler Sicht, welche Maßnahmen besonders geeignet sind, um Investoren entsprechende Sicherheit für ihre Investitionen zu bieten?

Auch wenn das amerikanische Fördersystem anders funktioniert als das europäische oder deutsche: Der Inflation Reduction Act unter dem damaligen US-Präsidenten Joe Biden war durchaus vorbildlich bezüglich seiner Anreize – etwa die Steuervorteile, "Tax Cuts", um Investitionen im großen Stil unter anderem in Windund Solaranlagen zu erleichtern. Ansonsten sind die Verhältnisse in anderen Ländern oder Kontinenten auf Deutschland und die EU nicht ohne weiteres übertragbar. Doch sehen wir hier unbürokratische, technologieoffene und wettbewerbsorientierte Ansätze grundsätzlich im Vorteil.

Endenergieverbrauch in Deutschland: Strom vs. Moleküle

Nur etwa 20 Prozent des heutigen Endenergiebedarfs deckt Deutschland mit Strom. Nahezu der gesamte Restfast 80 Prozent - stammt aus Molekülen. "Wenn die Transformation für die Bürgerinnen und Bürger zu teuer wird, wird die Akzeptanz schwinden."

Prof. Christian Küchen, en2x-Hauptgeschäftsführer

80% Moleküle (feste, flüssige, gasförmige Energieträger)

20% Strom

DEN PRAXISTEST


SEIT GUT EINEM JAHR IST HVO ALS REIN-KRAFTSTOFF IN DEUTSCHLAND ZUGELASSEN

Ein Jahr nach der Freigabe zum freien Verkauf an deutschen Tankstellen zeigt sich: HVO100 funktioniert in der Praxis. Gewonnen aus Rest- und Abfallstoffen wie gebrauchten Speiseölen, ersetzt es fossilen Diesel und senkt CO₂-Emissionen um bis zu 90 Prozent. Von Tankstellen bis hin zu Anwendern etwa aus Fuhrparks, der Landwirtschaft und den Kommunen kommt einhellig positives Feedback: "HVO100 läuft sauber, senkt den Wartungsaufwand und lässt sich ohne Umrüstung sofort nutzen - eine praxistaugliche Lösung für Fahrzeuge, die heute unterwegs sind."

lottenbetreiber jeder Größe haben im vergangenen Jahr HVO100 eingeführt - vom Handwerksbetrieb bis zum Konzern. Der Bundesverband Betriebliche Mobilität (BBM) zieht nach zwölf Monaten eine klare Bilanz: Der Umstellungsaufwand ist minimal, die Fahrer tanken einfach einen anderen Kraftstoff.

Überraschungen gab es, allerdings nur positive: weniger verstopfte Partikelfilter, längere Ölwechselintervalle, seltener Ausfälle. Besonders bei schweren Lkw, Kommunalfahrzeugen und Baumaschinen, wo es bislang kaum Alternativen gibt, sehen die Mitglieder HVO als praktikable Lösung. "HVO ist startklar. Wir glauben, dass sich der Kraftstoff in Deutschland wie in anderen Ländern auch flächendeckend durchsetzen wird", heißt es beim BBM. Mit mehreren hundert Stationen deutschlandweit, die HVO als Dieselreinkraftstoff anbieten, ist eine flächendeckende Verfügbarkeit bereits gewährleistet.

Um bis zu kann der Einsatz von HVO100 CO₂-Emissionen senken.

Tankstellen: Markteintritt mit Hürden

Einer der HVO-Pioniere auf Händlerseite ist Axel Niesing vom Kieler Energiehändler Anton Willer. Lange vor der bundesweiten Zulassung belieferte er den Abfallwirtschaftsbetrieb Kiel (ABK) in einer 18-monatigen Pilotphase. Das Ergebnis: keine technischen Auffälligkeiten, leiser Motorlauf, saubere Filter. Heute fährt der Hauptfuhrpark des ABK mit HVO - ein sofort wirksamer Beitrag zum Klimaschutz.

Doch Niesing kennt auch die Hürden: zusätzliche Tanks kosten sechsstellige Summen, Abstimmungen mit Behörden ziehen sich, Autofahrer reagieren zurückhaltend. "Umweltschutz finden alle gut, nur kosten darf er nichts", sagt er. In Hessen hat das Unternehmen ROTH Energie eine Modellregion für HVO100 aufgebaut: mehr als zehn Tankstellen sind inzwischen in Betrieb, schwerpunktmäßig im Raum Gießen. Auch in Städten wie Frankfurt am Main, Wetzlar oder Allendorf (Lumda)

wird HVO bereits angeboten - an der ersten Station in Frankfurt am Main werden derzeit rund 20 Tankvorgänge täglich gezählt. Der Energiegroßhändler CLASSIC aus Hoya setzt auf eine ähnliche Strategie: ausgewählte Standorte, Kooperationen mit Netzwerken wie der Klima Kraftstoffe GmbH und intensive Aufklärungsarbeit. Denn viele Autofahrer fragen nach Freigaben, Mischbarkeit und Herkunft des Kraftstoffs. Auch hier zeigt sich: Wer einmal HVO tankt, kommt meist wieder.

Landwirtschaft: Maschinen sind vorbereitet

Auf dem Feld bleibt der Verbrennungsmotor unverzichtbar - und die Hersteller haben reagiert. Traktorenhersteller Fendt hat sämtliche Baureihen für HVO freigegeben, auch rückwirkend. CLAAS geht noch weiter: Seit Oktober 2023 wird jedes Neufahrzeug ab Werk mit HVO100 betankt. Das spart jährlich rund 2.500 Tonnen CO₂. Landwirte, die HVO bereits einsetzen, berich-

ten von ruhigerem Lauf, sauberer Verbrennung und keinerlei Problemen bei Wartung oder Einsatzzeiten. "Wir könnten sofort loslegen, die Technik ist da", heißt es auch beim Deutschen Bauernverband. Für die Landwirtschaft ist klar: leistungsstarke Maschinen über 250 PS brauchen auch zukünftig flüssige Kraftstoffe und die durch sie gebotene hohe Energiedichte im Tank. HVO bietet dafür eine klimafreundliche Lösung, die ohne technische Anpassungen funktioniert.

ADAC: Unabhängiger Praxistest

Der ADAC hat HVO100 im vergangenen Jahr umfassend getestet - vom Pkw über Transporter bis hin zum Straßenwacht-Einsatzfahrzeug. Das Ergebnis: keine Leistungsverluste, keine Probleme bei der Betankung, dafür sauberere Abgase. "Die Alternative funktioniert technisch tadellos", lautet das Urteil. In den Abgastests zeigte sich laut ADAC-Report ein Rückgang der Schadstoffemissionen - ein Argument nicht nur für Umweltzonen, sondern auch für die gesellschaftliche Akzeptanz von Dieselfahrzeugen. Für den Automobilclub ist HVO deshalb eine sofort verfügbare Lösung, die Bestandsflotte klimafreundlicher zu machen.

↑ HVO100 macht Traktoren und Landmaschinen klimafreundlich sofort einsetzbar. ohne technische Anpassungen.

15

"OHNE E-FUELS VERSCHENKEN WIR GEWALTIGES POTENZIAL"

INTERVIEW MIT DR. MONIKA GRIEFAHN,
VORSTANDSVORSITZENDE DER EFUEL ALLIANCE

Das geplante EU-Verbrennerverbot bremst den Markthochlauf erneuerbarer Kraftstoffe aus. Dr. Monika Griefahn, Vorstandsvorsitzende der eFuel Alliance, erläutert, wie Europa mit Technologieoffenheit, verlässlichen Quoten und einem klaren Investitionssignal den Automobilstandort in eine neue Zukunft führt – und seine Klimaziele erreichen kann.

Frau Griefahn, CDU, CSU und SPD haben sich in ihrem Koalitionsvertrag zum Automobilstandort Deutschland und zu Technologieoffenheit bekannt. Aus Sicht der eFuel Alliance, die den Hochlauf erneuerbarer Kraftstoffe voranbringen möchte, eine gute Ankündigung? Grundsätzlich ist es positiv, dass die neue Bundesregierung Technologieoffenheit in ihrem Koalitionsvertrag verankert hat. Was fehlt, ist ein eigenständiges, klares Bekenntnis zu CO₂-neutralen Kraftstoffen. Genau das ist entscheidend, um Investitions- und Planungssicherheit zu schaffen. Die Industrie braucht konkrete Zusicherungen, es braucht mehr als reine Ankündigungen. Wir wünschen uns, dass der internationale E-Fuels-Dialog fortbesteht und internationale Partnerschaften weiter gestärkt werden. So können wir besser kooperieren und sehen, welche Wege funktionieren.

Die EU-Kommission hat mit dem Green Deal die Grundlagen für einen "electric only"-Pfad im Fahrzeugbereich gesetzt. Sehen Sie Anzeichen dafür, dass sich auf EU-Ebene beispielsweise mit dem Strategischen Dialog als Reaktion auf die Krise in der europäischen Automobilindustrie etwas tut, was als Bereitschaft zu mehr Technologieoffenheit in der Fahrzeugregulierung verstanden werden könnte?

Der Green Deal war für die EU eine große Chance, Vorreiter zu werden. Durch Überregulierung, Bürokratie und komplexe Vorgaben haben wir diese Rolle verspielt. Der Strategische Dialog sollte eine Perspektive bieten. Doch dem im März 2025 vorgestellten Aktionsplan fehlten entscheidende Impulse sowie die Berücksichtigung erneuerbarer Kraftstoffe. Nur mit erneuerbaren Kraftstoffen lässt sich die Elektromobilität sinnvoll ergänzen. Es gilt das Henne-Ei-Dilemma zu lösen und den Markthochlauf anzukurbeln. Wie das geht? In dem wir Nachfrage schaffen, Bürokratie abbauen und damit Investitionen anreizen.

Die Regierungsparteien im Bund haben in Ihrem Koalitionsvertrag angekündigt, die geänderte Erneuerbare-Energien-Richtlinie III (RED III) zeitnah umzusetzen und dabei den Einsatz alternativer Kraftstoffe voranzubringen. Bildet der vom Bundesumweltministerium im Juni vorgelegte Gesetzentwurf dafür eine geeignete Basis? Die Umsetzung der RED III bietet großes Potenzial, Klimaschutz im Verkehrssektor ankommen zu lassen. Je höher die nationale Quote, desto höher ist der Anteil an erneuerbaren Kraftstoffen im deutschen Markt. Die im Entwurf kommunizierte Quote ist zu gering. Vorgesehen ist eine Quote von 1,5 Prozent für Wasserstoff

"Es gilt, das Henne-Ei-Dilemma zu lösen und den Markthochlauf anzukurbeln.' und E-Fuels bis 2030, die bis 2040 auf zwölf Prozent steigen soll. Für Investitionen braucht es mehr Ambitionen und Investitionssignale. Die EU-Kommission hatte in der RePowerEU-Strategie fünf Prozent vorgeschlagen. In der RED verabschiedet wurden 0,5 Prozent. Fünf Prozent bis 2030 sind die notwendige Grundlage für einen Markthochlauf. Damit lassen sich Klimaschutz, Industriepolitik und Versorgungssicherheit sinnvoll zusammenbringen.

Für erneuerbare Kraftstoffe gilt in Deutschland bislang der gleiche Energiesteuersatz wie für herkömmliche. Halten Sie diesbezüglich Änderungen für angezeigt, um die Defossilisierung des Verkehrssektors voranzubringen?

Die Energiesteuer ist ein zentraler Hebel für die Defossilisierung. Eine Ausrichtung der Steuersätze einzelner Energieträger am Energiegehalt ist ein Schritt in die richtige Richtung. Derzeit werden fossile Kraftstoffe und klimaneutrale Alternativen steuerlich gleichbehandelt. Das setzt keine Anreize und bremst Investitionen für den Umstieg auf nachhaltige Kraftstoffe. Wir schlagen einen EU-weit obligatorischen Nullsteuersatz für klimaneutrale Energien vor, darin eingeschlossen, E-Fuels, erneuerbarer Strom und fortschrittliche Biokraftstoffe. Das stärkt den Markthochlauf, stellt faire Wettbewerbsbedingungen sicher und senkt

CO₂-Emissionen. Zugleich wäre der Nullsteuersatz ein klares Signal europäischer Geschlossenheit und eine entschlossene Antwort auf den Inflation Reduction Act, ohne neue Förderprogramme oder Subventionstöpfe für fossile Kraftstoffe.

Bei der Defossilisierung des Straßenverkehrs setzt der deutsche sowie der europäische Gesetzgeber bislang vorrangig auf einen Wechsel in der Antriebstechnologie, während die verwendete Antriebsenergie kaum mitgedacht wird. Wird damit Potential unter anderem für den Klimaschutz verschenkt?

Der einseitige Blick auf den Auspuff blendet die CO₂-Intensität der verwendeten Energie aus und verhindert, dass die Bestandsflotte zum Klimaschutz beiträgt Nötig sind eine Lebenszyklusanalyse und eine Regulierung, die Fahrzeug- und Kraftstoffwelt zusammen denkt. Das Potenzial ist groß: Eine Fünf-Prozent-Beimischung von E-Fuels im europäischen Straßenverkehr vermeidet rund 60 Millionen Tonnen CO₂ pro Jahr, das entspricht dem Ausstoß von circa 40 Millionen Pkw. Wie können wir dieses Potenzial nutzen? Erstens: die RED III national ambitioniert umsetzen, mit einer verbindlichen RFNBO-Quote von mindestens fünf Prozent bis 2030 sowie einem höheren THG-Minderungsziel. Zweitens: Fahrzeuge und Kraftstoffe koppeln, über einen Carbon-Correction-Factor, der den erneuerbaren Anteil im realen Kraftstoffmix berücksichtigt und ein freiwilliges Crediting-System, das Herstellern erlaubt zusätzliche erneuerbare Kraftstoffe auf ihre Flottenziele

anzurechnen. Ergänzend empfehlen wir eine Fahrzeugklasse für ausschließlich erneuerbar betriebene Fahrzeuge zu schaffen. Die Schweiz zeigt die Praxistauglichkeit des Crediting-Systems. Kurz: Solange wir Antriebe statt Energieträger in der EU adressieren, verschenken wir messbares Klimapotenzial.

Das pauschale EU-Neuzulassungsverbot für Fahrzeuge mit Verbrennungsmotor steht zunehmend in der Kritik. Was bedeutet dieses Verbot für den Automobilstandort Deutschland? Und welche Auswirkungen hat es für den Hochlauf erneuerbarer Kraftstoffe?

Ein Elektroauto ist per Definition ein Null-Emissionsfahrzeug - selbst wenn es mit Kohlestrom produziert und geladen wird. Das ist Augenwischerei. Die Energiequelle ist der Schlüssel. Europa geht mit dem Verbrennerverbot einen Sonderweg und gibt seine industrielle Führungsrolle ab. Das hat auch Auswirkungen abseits der Straße in denen es erneuerbare Kraftstoffe braucht: Bei der Herstellung von CO₂-neutralem Flugkraftstoff entstehen wertvolle Nebenprodukte, die sich für den Straßenverkehr oder die Schifffahrt nutzen ließen. Diese Nebenprodukte müssen regulatorisch anerkannt werden, dann gelingt die Skalierung.

Die Reviews der europäischen CO2-Flottenregulierungen für Pkw und leichte Nutzfahrzeuge sowie für schwere Nutzfahrzeuge stehen bald an. Was sind diesbezüglich Ihre Wünsche an die federführende EU-Kommission?

Das Potenzial von E-Fuels muss in den CO₂-Flottenregulierungen anerkannt und damit gehoben werden. Das wirkt sich positiv aufs Klima aus und stärkt die Wettbewerbsfähigkeit der Hersteller. Die Überarbeitung der Regulierungen 2026 ist eine Chance jetzt eine praxistaugliche Umsetzung zu erörtern.

Wie kann und sollte sich die neue Bundesregierung dafür einsetzen, dass die EU-Kommission in der Antriebsfrage technologieoffener als bislang agiert?

Erstens: schnell und ambitioniert die RED III in Deutschland umsetzen - Deutschland muss mutig sein und höhere Quoten für Wasserstoff und E-Fuels verabschieden, als es die EU vorgibt. Ein Drop-in-Anteil von fünf Prozent ist ohne technische Änderungen möglich und sendet ein starkes Investitionssignal. Zweitens muss Deutschland in Brüssel wieder Gewicht gewinnen. In der letzten Legislaturperiode war der Einfluss gering. Dazu gehört eine starke Stimme für Technologieoffenheit sowie schnelle Entscheidungen.

Fahrzeughersteller und ihre Vertreter fordern angesichts einer weiterhin schwachen Nachfrage nach E-Fahrzeugen zunehmend offensiver eine Abkehr vom bisherigen regulatorischen "all electric"-Ansatzes in der EU ein. "Besser spät als nie" aus Ihrer Sicht? Der Markthochlauf der E-Mobilität ist bereits in vollem

Gange. Trotzdem sehen wir strategische Unterschiede: In Europa verfolgen Hersteller das Verbrenner-Aus, in anderen Märkten investieren sie weiter in Verbrennungsmotoren. China setzt auf eine hybride Strategie: Elektroautos für den internationalen Markt, hybride Antriebe und Verbrenner für den heimischen Markt. Wir müssen verstehen, dass sich Technologien ergänzen. Wir begrüßen die Forderung nach einem technologieoffenen Umgang in der Politik.

Setzen andere automobile Leitmärkte ebenso wie die EU auf Technologieverbote zur Defossilisierung des Stra-Benverkehrs oder nutzen diese andere Instrumente?

Kein anderer Leitmarkt setzt auf Verbote. Japan verfolgt einen technologieoffenen Ansatz. Mit einer E-Fuels-Strategie ist die japanische Regierung weiter. Die USA fördern mit Steuererleichterungen. China kombiniert hohe Zulassungszahlen von Elektrofahrzeugen mit hybriden Konzepten und investiert stark in Wasserstoffderivate wie Methanol. Europa muss stärker auftreten, um die Technologieführerschaft zu sichern. Andere Länder setzen auf Einfachheit und Anreize - und kommen damit schneller voran.

↑ Die Rücknahme des Verbrennerverbots wird auch auf EU-Ebene intensiv diskutiert.

,Wir verschenken messbares Klimapotenzial."

Der Übergang zu einer klimaneutralen Energieversorgung wird nicht nur über Stromnetze und Solardächer entschieden, sondern auch über flüssige Moleküle. Überall auf der Welt wird bereits daran gearbeitet, erneuerbare Kraftstoffe aus Strom, Wasser und CO₂ industriell nutzbar zu machen.

nter dem Motto "Welcome to Destination Defossilization" eröffnete INERATEC im Juni 2025 die Anlage ERA ONE im Industriepark Frankfurt-Höchst. Sie ist die größte Power-to-Liquid-Anlage Europas - und die erste, die bald im industriellen Maßstab kommerzielle Mengen produzieren soll: 2.500 Tonnen pro Jahr. ERA ONE liefert damit E-Kerosin für die Luftfahrt, E-Diesel und E-Heizöl sowie Rohstoffe für die Chemieindustrie. Die Kraftstoffe können ohne technische Anpassungen in bestehende Infrastrukturen eingespeist werden. Möglich wurde das Projekt durch ein Finanzierungspaket von 70 Millionen Euro. Lufthansa und weitere Partner etwa aus dem Energiemittelstand begleiten den Markteintritt und sichern Abnahmemengen.

INERATEC nutzt für die Produktion CO2 aus einer Biogasanlage und grünen Wasserstoff aus der Chlorproduktion im benachbarten Industriepark. Daraus entsteht ein synthetisches Rohöl, das vorerst vor allem zu Flugkraftstoffen und Basischemikalien weiterverarbeitet wird. "Wir ersetzen fossile Moleküle durch grüne Moleküle", pro Jahr produziert ERA ONE für den Anfang.

2.500

↑ Für Chile ist die

men eine Referenz.

Anlage ein Einstieg

in einen neuen Export-

markt, für deutsche Fir-

sagt CEO Tim Böltken. Er will von der Nische in den Markt kommen. Eine weitere Kooperation gibt es mit Rolls-Royce Power Systems: E-Diesel aus ERA ONE soll künftig in Notstromsystemen von Rechenzentren eingesetzt werden. Bis 2030 will das Unternehmen die Jahresproduktion vervielfachen. Für den Industriestandort Deutschland ist ERA ONE ein Symbol dafür, dass Europa beim Hochlauf der Moleküle aktiv vorangehen will.

Haru Oni

3.4 MW Leistung

E-Fuels im Jahr 2024

Pionier in Patagonien: Haru Oni

Am südlichsten Zipfel Südamerikas steht die Pilotanlage Haru Oni. Hier weht der Wind fast ununterbrochen stark - ideale Bedingungen für die Herstellung synthetischer Kraftstoffe. Entwickelt und betrieben wird die Anlage von HIF Global, einem 2016 gegründeten Unternehmen mit Sitz in Santiago de Chile. Unterstützt von Partnern wie Porsche, Siemens Energy und ExxonMobil produziert Haru Oni seit Ende 2022 synthetisches Benzin aus Windstrom, Wasser und CO2. Zunächst sollen jährlich rund 130.000 Liter synthetisches Benzin entstehen. Damit zeigt Haru Oni, dass E-Fuels unter realen Bedingungen hergestellt, genutzt und exportiert werden können. Für Chile ist die Anlage ein Einstieg in einen neuen Exportmarkt, für Porsche ein Proof-of-Concept, für deutsche Technologieanbieter eine internationale Referenz. In Texas, Uruguay und Australien bereitet HIF bereits deutlich größere Anlagen vor, die auf den Erfahrungen aus Patagonien aufbauen.

So markiert Haru Oni den Beginn einer globalen E-Fuel-Industrie: Energie wird dort gewonnen, wo sie reichlich vorhanden ist, und in flüssiger Form dorthin gebracht, wo sie gebraucht wird.

Tonnen E-Fuels

"Die Transformation zur Elektromobilität wird massive Auswirkungen auf Beschäftigung und Wertschöpfung haben." Mit diesen Worten fasste der Verband der Automobilindustrie (VDA) im vergangenen Jahr die Ergebnisse einer Studie des Instituts Prognos zusammen. Tatsächlich hängt der industrielle Kern Deutschlands bis heute stark am Verbrennungsmotor – und genau hier liegt die größte Herausforderung.

er Verbrennungsmotor ist weit mehr als ein Antrieb. Er ist ein Symbol deutscher Ingenieurskunst, Grundlage von Wohlstand und Beschäftigung und ein Eckpfeiler der Exportwirtschaft. Viele Millionen Fahrzeuge aus Deutschland sind damit in aller Welt unterwegs. Mehr als eine Dreiviertelmillion Menschen arbeiten in der deutschen Automobilindustrie, ein erheblicher Teil von ihnen direkt oder indirekt am Antriebsstrang. Ganze Regionen sind vom Verbrenner geprägt: In Baden-Württemberg sichern Daimler, Porsche und hunderte Zulieferer zehntausende Jobs, in Bayern sind es BMW und Audi, in Niedersachsen der Volkswagen-Konzern, im Ruhrgebiet zahlreiche Teile-Hersteller.

Doch die Zahl der Arbeitsplätze schrumpft in hohem Tempo. Zwischen 2019 und 2023 gingen bereits 46.000 Stellen verloren. Laut Unternehmensberatung EY fielen 2024 über 50.000 Jobs weg. Der VDA warnt vor einem weiteren Abbau von bis zu 190.000 Stellen bis 2035. So sollen allein bei VW 35.000 Arbeitsplätze wegfallen. Ähnliche Schritte betreffen Mercedes, Porsche und Audi. Ende September kündigte Bosch an, in der Mobility-Sparte bis 2030 weitere 13.000 Stellen zu streichen. Zusammen mit früheren Kürzungen könnten damit beim größten Autozulieferer Deutschlands rund 22.000 Arbeitsplätze wegfallen. Besonders betroffen ist das klassische Verbrennergeschäft mit Einspritzsystemen und Abgasnachbehandlung. ZF Friedrichshafen - stark vom Geschäft mit Getrieben für Verbrenner abhängig - will bis 2028 rund 14.000 Stellen abbauen. IG-Metall-Chefin Christiane Benner sagte, die Lage in der Branche war "noch nie so angespannt wie jetzt".

"Noch nie war die Lage so angespannt wie ietzt."

IG-Metall-Chefin Christiane Benner

Ein 10-Punkte-Plan für Bayern

Rund um die IAA Mobility 2025, die im September in München stattfand, äußerten die Ministerpräsidenten Markus Söder (Bayern) und Michael Kretschmer (Sachsen) Kritik am geplanten Verbrenner-Aus ab 2035. Sie forderten Technologieoffenheit und warnten vor Standort- und Stellenverlusten.

Angesichts der bedrohlichen Lage für die heimische Automobilindustrie durch das Verbrenner-Aus hat Bayerns Ministerpräsident Markus Söder einen 10-Punkte-Plan vorgelegt. Im Zentrum steht die Forderung, das geplante Verbrennerverbot 2035 zu stoppen, weil der Motor mit E-Fuels und neuen Technologien eine klimaneutrale Perspektive hat und hunderttausende Arbeitsplätze sichert. Ebenso fordert der Plan, CO₂-Strafzahlungen auszusetzen, die deutsche Hersteller im internationalen Wettbewerb benachteiligen.

Auch die unrealistischen CO₂-Ziele "am Auspuff" gehören überarbeitet - Einsparungen bei Produktion und Energieträgern müssen berücksichtigt werden. Söder wendet sich zudem klar gegen pauschale Fahrverbote und eine Pflicht zur Elektrifizierung von Dienst- und Mietwagen. Über allem müsse das Prinzip der Technologieoffenheit stehen: Klimaschutz könne nur gelingen,

Deutsche Hersteller erzielen wichtige Anteile ihrer Umsätze außerhalb Europas in Märkten, in denen E-Mobilität auf absehbare Zeit keine dominante Rolle spielen

Entwicklung der Jobs in der Automobilindustrie

Der Arbeitsplatzabbau in der deutschen Automobilbranche legt an Tempo

46.000 Stellen weniger zwischen von 2019 bis 2023

50.000 Stellen

weniger laut den

2024

Beratern von EY

bis 2035 (Prognose)

190.000 Arbeitsplätze könnten laut Befürchtungen des VDA wegfallen. wenn Verbrenner, E-Fuels, HVO, Hybrid- und Elektroantriebe zusammengedacht würden – und die Politik den Rahmen dafür schaffe.

Globale Märkte - Verbrenner bleiben gefragt

Wichtige Anteile ihrer Umsätze erzielen die deutschen Hersteller außerhalb Europas – in Märkten, in denen die Elektromobilität auf absehbare Zeit keine dominante Rolle spielen kann. Fehlende Ladeinfrastruktur, schwache Stromnetze, geringe Kaufkraft: In vielen Weltregionen bleibt der Verbrenner Alltag. Während Europa über Ausstiegsdaten diskutiert, setzt man andernorts auf Technologieoffenheit und einen Antriebsmix.

Auch die IAA Mobility 2025 machte dies deutlich. Neben zahlreichen Elektro-Premieren präsentierte Volkswagen den neuen T-Roc mit klassischen Antrieben. Porsche-Chef Oliver Blume betonte, dass der Verbrennungsmotor bei seinem Unternehmen "weit in die 2030er Jahre" eine wichtige Rolle spielen werde – also über das geplante Verbrenner-Verbot hinaus. Die Realität der Märkte zwingt die Hersteller zu einem breiten Antriebsangebot.

Im Inland zeigt sich ein ähnliches Bild: Reine Elektroautos erreichten 2024 einen Neuzulassungsanteil von 13,5 Prozent, im Bestand machen sie jedoch 3,3 Prozent aus. Allerdings sind viele dieser Zulassungen wohl taktischer Natur, sagt der Zentralverband Deutsches Kraftfahrzeuggewerbe. Händler lassen Fahrzeuge auf sich selbst zu, um Quoten der Hersteller zu erfüllen oder Rabatte zu sichern. Nach Angaben von Dataforce war zuletzt mehr als jeder vierte zugelassene Stromer eine Eigenzulassung. Auch das Fachmagazin kfz betrieb weist darauf hin, dass der Zulassungsschub nicht allein auf echte Kundennachfrage zurückzuführen ist.

Bei Nutzfahrzeugen ist die Diskrepanz zwischen Wunsch und Wirklichkeit noch größer. Der Anteil elektrischer Modelle liegt bei rund zwei Prozent. Lkw brauchen hohe Reichweiten und kurze Standzeiten zur Betankung, Traktoren müssen große Massen bewegen - Anforderungen, bei denen flüssige Energieträger unschlagbar sind. Dank ihrer hohen Energiedichte, leichter Lager- und Transportfähigkeit und einer weltweit bestehenden Infrastruktur bleiben sie für viele Anwendungen alternativlos. Für den Pkw- und Nutzfahrzeugbestand bedeutet das: Der Hebel für Klimaschutz liegt nicht allein in der Elektromobilität und im Neuwagenmarkt, sondern auch in der Verbrennertechnik in den heute bereits im Markt befindlichen Millionen Pkw und Lkw sowie in zukünftigen Neufahrzeugen. Mit E-Fuels und HVO lassen sich Verbrenner unmittelbar emissionsarm betreiben - ohne lange Umrüstzeiten, ohne neue Infrastruktur.

Der Verbrenner als Innovationsmotor

Kaum eine Technik wurde über Jahrzehnte so konsequent weiterentwickelt wie der Verbrennungsmotor. Vergaser wichen der Direkteinspritzung, einfache Aggregate wurden zu aufgeladenen Hochleistungsmotoren, mecha-

Millionen Verbrenner sind weltweit im Einsatz - mit E-Fuels und HVO können sie sofort klimafreundlicher fahren.

nische Steuerungen durch digitale Systeme ersetzt. Abgasgrenzwerte und Verbrauchsvorgaben lösten ganze Innovationswellen aus - vom Drei-Wege-Katalysator über Dieselpartikelfilter bis hin zu SCR-Technik und Hybridisierung. Heute erreichen moderne Motoren Wirkungsgrade und niedrige Schadstoff- sowie Emissionswerte, die vor zwanzig Jahren noch unerreichbar schienen.

Diese Fortschritte sind das Ergebnis kontinuierlicher Investitionen. Für den Zeitraum 2023 bis 2027 planen die Automobilhersteller und -zulieferer mit deutscher Zentrale laut VDA, weltweit mehr als 250 Milliarden Euro in Forschung und Entwicklung zu investieren - also über 50 Milliarden Euro pro Jahr. Davon fließt auch ein großer Teil in die Optimierung des Verbrennungsmotors. So bleibt die deutsche Industrie technologisch an der Spitze.

Die Bedeutung reicht weit über die Werke hinaus. Der Verbrenner hält ganze Wertschöpfungsketten am Laufen - vom Maschinenbau über die Metallindustrie bis zur Chemiebranche, die Kraftstoffe, Additive und Schmierstoffe liefert. Auch der Anlagenbau profitiert, etwa mit Technologien für Motorfertigung oder Abgasnachbehandlung. Nicht zuletzt ist das Auto Deutschlands wichtigstes Exportgut: 2024 lag der Exportwert von Pkw und Fahrzeugteilen laut dem Statistischen Bundesamt bei über 260 Milliarden Euro, ein erheblicher Teil davon auf Verbrennerbasis. Damit trägt der Motor direkt zum Leistungsbilanzüberschuss bei und sichert die Rolle Deutschlands als Exportnation.

Technische Zukunftsfelder

Die Entwicklung ist nicht abgeschlossen. Forscher und Hersteller arbeiten an neuen Konzepten, die den Verbrenner technologisch weiter voranbringen sollen: Wasserstoff-Verbrennungsmotoren, Methanol-Antriebe oder die Optimierung synthetischer Kraftstoffe für bestehende Aggregate. Das Besondere: Der Beitrag zum Klimaschutz kann sofort beginnen. Mit E-Fuels und HVO lassen sich alle Bestandsfahrzeuge mit Verbrennungsmotor unmittelbar defossilisieren. Neue Motorengenerationen werden zusätzlich darauf ausgelegt, alternative Kraftstoffe noch effizienter zu nutzen. Auch auf der IAA 2025 wurde deutlich, dass die Branche auf mehr Technologieoffenheit setzt als in den letzten Jahren.

Das Verbrennerverbot sorgt dafür, dass die deutsche Automobilindustrie aus einer Technologie aussteigen muss, bei der sie bislang weltweit führend war. Die schleppende Nachfrage nach E-Autos gefährdet derweil Arbeitsplätze und Wertschöpfung hierzulande. Kein Wunder, dass die Vertreter der Hersteller, VDA und ACEA, sich seit Kurzem auch für mehr Technologieoffenheit aussprechen. Denn der Verbrenner sorgt für Mobiliät und Wertschöpfung.

250 Milliarden Euro gibt die deutsche Automobilbranche von 2023 bis 2027 für F+E aus.

Der Verbrenner hält ganze Wertschöpfungsketten am Laufen - vom Maschinenbau über die Metallindustrie bis zur Chemiebranche.

Während weltweit überwiegend Verbrenner zugelassen werden, droht Deutschland durch einen abrupten Umstieg Arbeitsplätze, Industriekompetenz und Wettbewerbsfähigkeit einzubüßen.

er Motor der deutschen Wirtschaft ist der Verbrenner. Dies mag man bedauern oder auch nicht, aber Fakt ist: Der Verbrennungsmotor hat eine immense wirtschaftliche Bedeutung für den Wirtschaftsstandort Deutschland. Noch immer bilden Kraftfahrzeuge mit Verbrennungsmotor die Grundlage der deutschen Automobilindustrie, welche Deutschland zu einem führenden Industriestandort machte und Tausende von Arbeitsplätzen schuf. Dementsprechend stellt die geplante Einführung eines Verbrenner-Aus für Neuzulassungen ab 2035 den Wirtschaftsstandort Deutschland vor große Herausforderungen. Das Verbrenner-Aus impliziert tiefgreifende Veränderungen für die Automobilbranche, die Zulieferer und den Arbeitsmarkt. Insgesamt waren im vergangenen Jahr 772.900 Personen in der Automobilindustrie beschäftigt und damit rund 61.000 Personen weniger als im Rekordjahr 2018. Gut 60 Prozent der Arbeitnehmer sind bei den Automobilherstellern direkt beschäftigt, die in Deutschland nach wie vor primär Autos mit klassischem Verbrennungsmotor herstellen. Im Jahr 2024 wurden in Deutschland rund 2,8 Millionen neue Pkw zugelassen. Von diesen waren 86 Prozent mit einem klassischen Verbrennungsmotor ausgestattet (62 Prozent Benzin, 24 Prozent Diesel). Nur rund 14 Prozent der neu zugelassenen Pkw verfügten über einen reinen Elektroantrieb. Im europäischen Quervergleich haben Elektroautos zwar schon einen größeren Marktanteil erobert, denn in Gesamt-Europa sind "nur" noch 75 Prozent der PKW-Neuzulassungen reine Verbrenner. Selbst in China, dem weltweit größten Markt für Elektroautos, lag ihr Anteil bei den PKW-Neuzulassungen im Jahr 2024 noch unter 30 Prozent. In den USA ist aufgrund der Einstellung der Förderprogramme durch die Trump-Regierung vermutlich kein allzu rasches Wachstum des Marktes für Elektromobilität zu erwarten. Der Anteil reiner Elektroautos bei den Neuzulassungen lag im vergangenen Jahr in den USA ohnehin noch unter zehn Prozent. Insgesamt ist ein schnelles Aus des Verbrennungsmotors somit weltweit vorerst nicht zu erwarten.

Vorreiter beim Abschied vom Verbrennungsmotor will ausgerechnet die Europäische Union sein, also die Jurisdiktion, in der die weltweit führenden Hersteller effizienter Verbrennungstechnologien beheimatet sind und für Tausende von sehr gut bezahlten Jobs sorgen. Bei einem abrupten Umstieg auf Elektromobilität könnten einer Prognos-Studie im Auftrag des VDA zufolge bis 2035 in Deutschland bis zu 190.000 Jobs verloren gehen. Auf vergleichbare Zahlen kommt das Münchener ifo-Institut in einer Studie. Dass im Gegenzug in einem ähnlichen Umfang neue Jobs in der Elektromobilität in Deutschland entstehen, ist hingegen unwahrscheinlich, da für die Produktion von Elektrofahrzeugen weniger komplex ist und weniger Arbeitskräfte benötigt.

Ob ein Verbrennerverbot letztlich den Klimawandel überhaupt wirksam bremst und den Ausstoß von Treibhausgasen effektiv reduziert, ist zudem fraglich. Natürlich verursachen Elektroautos - allerdings in Abhängigkeit vom Strommix in der Erzeugung - zumindest bei Strom aus erneuerbaren Energien im Betrieb weniger Treibhausgasemissionen als herkömmlich Verbrennungsmotoren. Inwieweit dies jedoch einen Rückgang bei der globalen Ölförderung auslöst, ist unklar. Denkbar ist vielmehr auch, dass die ölfördernden Staaten bei einem Verschwinden von Fahrzeugen mit Verbrennungsmotoren ihre Produktion gar nicht drosseln, sondern im Gegenteil versuchen, ihr Öl schnellstmöglich noch zu verkaufen, bevor es keine Autos mit Verbrennungsmotor mehr gibt - ein Phänomen, dass Hans-Werner Sinn einmal als das "Grüne Paradoxon" bezeichnet hat. Mindestens aber wird eine sinkende Nachfrage nach Mineralöl in Europa den Ölpreis drosseln und so weniger Anreize setzen, in anderen Teilen der Welt verbrauchsärmere Fahrzeuge zu entwickeln. Eine Drosselung der Öl-Nachfrage aus Europa heißt keinesfalls, dass auch das weltweite Öl-Angebot automatisch zurückgehen wird.

In der Gesamtschau ist das sogenannte Verbrennerverbot in der EU somit mindestens mit großer Skepsis zu betrachten. Besser als das Verbot einzelner Technologien wäre eine konsequente CO2-Bepreisung bei gleichzeitiger Technologieoffenheit. Im Wettbewerb kann sich dann zeigen, welche Technologien sich wie schnell durchsetzen. Dirigistische Verbote, die bestimmte technologische Entwicklungspfade von vornherein ausschließen, hingegen können sehr teuer sein und die in Deutschland ohnehin voranschreitende Deindustrialisierung nochmals befördern.

KIT-EXPERTE OLAF TOEDTER ERKLÄRT, WIE E-FUELS UND HVO EINEN BEITRAG **ZUM KLIMASCHUTZ LEISTEN UND WARUM EUROPAS REGULIERUNG AN DER** REALITÄT VORBEIGEHT.

Für Dr. Olaf Toedter, Leiter neue Technologien und Zündsysteme am Karlsruher Institut für Technologie (KIT,) steht fest: Entscheidend für die Klimabilanz ist nicht der Motor, sondern die verwendete Antriebsenergie. Im Gespräch erläutert er, warum erneuerbare Kraftstoffe im Bestand sofort wirken, weshalb die EU-Regulierung an der Realität vorbeigeht - und wieso sich am Ende "die Physik nicht ändern lässt".

Herr Toedter, mehr als 96 Prozent der Fahrzeuge im Bestand in Deutschland verfügen über einen Verbrennungsmotor. Auch bei Neufahrzeugen dominieren Verbrenner oder Hybride. Warum ist das so?

Der Verbrennungsmotor ist eine robuste Technologie, die über Jahrzehnte weiterentwickelt wurde. Wir haben es mit sehr unterschiedlichen Nutzerprofilen zu tun: vom Kurzstreckenbetrieb bis zu Langstreckentransporten, von Baumaschinen bis zu landwirtschaftlichen Anwendungen. Dieses breite Spektrum konnte bisher kein anderes Antriebskonzept so abdecken wie der Verbrennungsmotor. Mit der Hybridisierung ist er zudem noch effizienter geworden.

Wie lange wird dieser hohe Anteil Ihrer Einschätzung nach bestehen bleiben?

Wenn wir es schaffen, fossilen Kohlenstoff durch Kohlenstoff aus erneuerbaren Quellen zu ersetzen, dann sehe ich keinen Grund, warum das enden sollte. Jeder wird den Antrieb wählen, der für seine Anwendung am besten passt. Und da wird weiterhin ein erheblicher Anteil verbrennungsmotorisch sein - fast immer hybridisiert. Allerdings hängt das stark von der Regulierung ab. Heute bewertet die EU-Flottenverordnung nur die Emissionen am Auspuff - nicht die CO₂-Vorkette, also 💆 das, was wir Well-to-Tank nennen. Das führt zu einer

Asymmetrie: Während die Renewable Energy Directive erneuerbare Kraftstoffe berücksichtigt, fallen sie in der Flottenregulierung durchs Raster. Würden Fahrzeuge mit CO₂-neutralen Kraftstoffen gleichgestellt, könnten sie wie Elektrofahrzeuge anerkannt werden - und sofort zum Klimaschutz beitragen.

Welche Rolle spielen erneuerbare Kraftstoffe dabei?

Sie sind der Schlüssel. Entscheidend ist nicht der Motor, sondern die Vorkette des Energieträgers. Wenn wir fossilen Kohlenstoff durch Kohlenstoff aus regenerativen Quellen ersetzen, entsteht ein geschlossener Kreislauf. Das wirkt sofort - im gesamten Bestand.

Sind E-Fuels oder HVO ohne technische Anpassungen nutzbar?

Wir haben am KIT bewusst den Begriff "reFuels" verwendet, um all diese Kraftstoffe zusammenzufassen egal, ob sie auf erneuerbarem Strom, biogenen Quellen oder Reststoffen basieren. Entscheidend ist: Sie liegen innerhalb der Kraftstoffnormen und sind damit sofort in der gesamten Bestandsflotte nutzbar. Das gilt nicht nur für Pkw, sondern auch für Schienenfahrzeuge, Schiffe oder Flugzeuge. Es ist kein Entweder-oder, sondern ein Sowohl-als-auch: All diese Pfade tragen zusammen zur Defossilisierung bei.

,Der Kraftstoff ist der Schlüssel beim schutz."

Ab 2035 dürfen Pkw am Auspuff kein CO₂ mehr emittieren. Ist es sinnvoll, nur auf den Tailpipe-Ansatz zu schauen?

Nein. Aus wissenschaftlicher Sicht ist dieser Rahmen zu klein. Die Flottenregulierung betrachtet nur die Emission am Auspuff, nicht aber die Vorkette. Die Renewable Energy Directive tut es, die Flottenregulierung nicht. Das ist eine Asymmetrie, die Probleme verschiebt, statt löst. Wenn ich direkt oder indirekt CO2 aus der Atmosphäre entnehme und es in den Kreislauf zurückführe. habe ich im besten Fall ein geschlossenes System. Physikalisch wird es nie 0.0 sein, aber es ist ein entscheidender Beitrag.

Und was bedeutet das für den Vergleich zwischen Elektroautos und Verbrennern mit erneuerbaren Kraftstoffen?

Batterieelektrische Fahrzeuge sind nicht CO₂-frei, sie schneiden teilweise kaum besser ab als moderne Fahrzeuge mit Verbrennungsmotor oder Hybride. Versorge ich einen Verbrennungsmotor mit erneuerbaren Kraftstoffen, sind deren Werte im Vergleich sogar besser. Und das Entscheidende: Die Wirkung tritt sofort ein, im gesamten Bestand. Natürlich gibt es Idealfälle bei E-Autos, etwa wenn iemand eine eigene Photovoltaik-Anlage auf dem Dach hat und damit sein Auto lädt. Aber realistisch sind die meisten Haushalte ans Netz angeschlossen. Diese Systemrealität wird oft ausgeblendet. Besonders deutlich wird der Vorteil bei Hybriden: Sie profitieren von beiden Seiten - elektrischer Effizienz im Kurzstreckenbetrieb und erneuerbaren Kraftstoffen auf langen Strecken. Damit schneiden sie in realistischen Ökobilanzen oft besser ab als gedacht.

Braucht es eine Überarbeitung der EU-Flottenverordnungen?

Unbedingt. Wenn wir die realen Emissionen senken wollen, müssen wir die Vorketten einbeziehen. Dann können wir alle Technologien dort einsetzen, wo sie am meisten bewirken - batterieelektrisch in der Stadt, flüssige Kraftstoffe auf langen Strecken. Fahrzeuge, die mit CO₂-neutralen Kraftstoffen betrieben werden, sollten genauso anerkannt werden wie Elektrofahrzeuge.

Droht durch die nächste Stufe der Verschärfung der CO₂-Flottenziele in 2030 ein de-facto-Verbrennerverbot schon vor dem Jahr 2035?

Ja, faktisch läuft es darauf hinaus. Hersteller können physikalisch nicht erreichbare Werte nur dadurch erfüllen, dass sie viele batterieelektrische Fahrzeuge zulassen, die mit null Gramm zählen, oder durch Pooling mit anderen Herstellern. Das führt zu einer Quersubventionierung: Fahrzeuge mit Verbrennungsmotoren finanzieren indirekt die E-Fahrzeuge.

Entwicklungszyklen der Automobilindustrie aus? Das ist ein entscheidender Punkt. Die Automobilindus-

Wie wirken sich diese Vorgaben auf die langen

trie plant in langen Zyklen: von der Flottenplanung über Modellreihen bis hin zu konkreten Fahrzeugen. Jede Neuentwicklung muss erprobt und freigegeben werden - Kunden erwarten absolute Verlässlichkeit. Wenn klar ist, dass der Verbrennungsmotor in Europa keine Zukunft hat, wird nicht mehr investiert, Schon heute sehen wir: In Europa wird kaum noch vorentwickelt, während in Asien und den USA Hybrid- und Verbrennertechnologien weiter beschleunigt werden. Die Physik lässt sich dabei nicht ändern: Egal mit welchem Antrieb, es gibt Anwendungsfälle, die Kraftstoffe brauchen - und wenn Europa diese Entwicklung stoppt, wird sie anderswo vorangetrieben.

Warum fordern inzwischen auch OEM mehr Technologieoffenheit?

Weil es nicht um den Motor an sich geht, sondern um die Regulierung, Entscheidend ist, dass derzeit nur der CO₂-Wert am Auspuff zählt. OEM und Verbände kritisieren, dass klimaneutrale Kraftstoffe dadurch nicht anerkannt werden. Würden Fahrzeuge, die ausschließlich mit erneuerbaren Kraftstoffen betrieben werden, als eigene Klasse bilanzierbar, ließe sich das 0-Gramm-Ziel auch ohne reinen Elektrozwang erreichen. Wenn Fahrzeuge mit erneuerbaren Kraftstoffen anerkannt würden. hätten wir realen Klimaschutz. Genau deshalb fordern mittlerweile auch die Hersteller Technologieoffenheit.

Schadet der "all electric"-Kurs der EU der deutschen Automobilwirtschaft?

Ja. Unsere Ingenieurkompetenzen werden nicht berücksichtigt. Und es ist auch nicht der Kurs, der zur maximalen Treibhausgasreduktion führt. Wir brauchen Wettbewerb der Technologien unter vergleichbaren Rahmenbedingungen.

Andere Weltregionen setzen nicht auf ein Verbrennerverbot. Wie gehen sie vor?

Japan, China oder die USA betrachten die gesamte Kette, nicht nur den Auspuff. China setzt auf unterschiedliche Fahrzeugklassen, Japan auf parallele

Technologien. Europa hat sich sehr speziell aufgestellt - und nicht unbedingt auf dem effizientesten Weg. Die EU-Regulierung folgt den IPCC-Vorgaben, die länderspezifisch bilanzieren. Die EU-Regulierung folgt den Vorgaben des Pariser Abkommens und den Bilanzierungsrichtlinien des IPCC. Diese Logik ist länderspezifisch und führt bei global gehandelten Energieträgern zu erheblichen Verschiebungen. Hier gibt es Handlungsbedarf. Am Ende setzen sich weltweit die technisch besten Systeme durch.

dende Rolle

4 % BEV/andere

Der Verbrennungsmotor

spielt im Fahrzeugmix noch

immer eine ganz entschei-

Aktueller

Fahrzeug-

bestand

96 % Verbrenner

IRRTUM ODER WAHRHEIT: WAS IST DRAN ANDEN DREI GRÖSSTEN E-FUELSMYTHEN?

E-FUELS POLARISIEREN - ES WIRD ZEIT FÜR EINEN PRAXIS-CHECK

Synthetische Kraftstoffe, die mit erneuerbarem Strom aus Wasserstoff und CO₂ hergestellt werden, gelten vielen als Hoffnungsträger, anderen als Illusion. Kaum ein Thema der Energiewende wird so emotional diskutiert. In der hitzigen Debatte kursieren Mythen, die sich seit Jahren halten und am Ende einer sachlichen Analyse nicht standhalten. Die drei größten Mythen zum Thema E-Fuels im Praxis-Check.

→ MYTHOS 1

→ MYTHOS 3

"E-Fuels sind unbezahlbar."

Die Realität: Die derzeit noch als eher hoch eingeschätzten Produktionskosten für E-Fuels sind darauf zurückzuführen, dass diese bislang vor allem aus Demonstrationsanlagen und industriellen Pilotanlagen stammen. Mit zunehmenden Erfahrungswerten, technologischem Fortschritt und einer positiven Skalierung über die Zeit werden diese Kosten deutlich absinken, erwarten die Autoren der Studie "Szenarien für den Markthochlauf von E-Fuels im Straßenverkehr" von Frontier Economics. Sie prognostizieren langfristig eine Spanne für die Produktionskosten (inkl. Transport nach Deutschland) von 0,99 Euro bis 1,63 Euro / Liter E-Benzin bzw. für E-Diesel von 1,09 Euro bis 1,80 Euro je Liter. Welcher Preis sich innerhalb der Bandbreite einstellt, hängt unter anderem davon ab, an welchen Produktionsstandorten E-Fuels hergestellt werden und wie stark die positiven Skaleneffekte ausfallen.

Grundsätzlich gilt: E-Fuels können herkömmlichen Kraftstoffen in beliebigen Anteilen beigemischt werden. Sie würden zu Beginn des Markthochlaufs nur in geringen Anteilen fossilen Kraftstoffen beigemischt. Durch den Ausbau von Produktionskapazitäten und wirtschaftliche Skaleneffekte können die Herstellungskosten deutlich gesenkt werden. E-Fuels wären auch in den Jahren des Markhochlaufs für den Autofahrer bezahlbar, denn ihr Beimischungsanteil würde allmählich steigen, während auf der anderen Seite die Produktionskosten stetig sinken.

"Strom für E-Fuels zu nutzen ist weniger effizient als für E-Autos."

Die Realität: Dieser Mythos beruht auf einem Effizienzvergleich batterieelektrisch angetriebener Fahrzeuge mit E-Fuels betriebenen Verbrennerfahrzeugen, deren beider Antriebsenergie auf Grünstrom aus Deutschland basiert. Die Annahme ist bezüglich E-Fuels falsch. Diese profitieren davon, dass sie an internationalen Standorten mit hohen Stromerträgen aus erneuerbaren Energien hergestellt und von dort importiert werden können. Ladestrom für E-Fahrzeuge muss dagegen aufgrund von Speicher- und Transportrestriktionen nah am Ort der Verwendung erzeugt werden. In gängigen Effizienzanalysen bleiben vor allem solche standortspezifischen Faktoren der Erzeugung erneuerbarer Energien und die damit einhergehende Ertragseffizienz der erneuerbaren Stromgewinnung unberücksichtigt. Sie beschränken sich damit auf einen reinen Vergleich des technischen Wirkungsgrads des Motors, der zu kurz greift. Eine Studie (Frontier Economics, 2020) hat nachgewiesen, dass Fahrzeuge mit Verbrennungsmotor, die mit CO₂-neutralen Kraftstoffen angetrieben werden, die an internationalen Standorten mit hohem Grünstrompotential hergestellt werden, bei einem gesamtheitlichen Effizienzvergleich für Produktion und Nutzung ein ähnliches Ergebnis aufweisen wie batteriegetriebene Fahrzeuge.

"Wenn schon E-Fuels, dann nur für den Flugverkehr."

Die Realität: Ohne E-Fuels im Straßenverkehr wird es kein E-Kerosin für Flugzeuge geben. Das hat sowohl technische als auch wirtschaftliche Gründe. Kraftstoffe werden in einer so genannten Koppelproduktion hergestellt. Das heißt: Sowohl bei ihrer Erzeugung als auch bei der Verarbeitung von (synthetischem) Rohöl zu Kraftstoff-Endprodukten fallen in Raffinerien zwangsläufig verschiedene Kraftstoffe und andere Erzeugnisse an, vor allem Diesel- und Ottokraftstoff sowie Kerosin. Der Anteil von Kerosin an den Koppelprodukten, den man bei der Verarbeitung fossilen Rohöls in einer Raffinerie erhält, beträgt zurzeit in Deutschland zwischen fünf und zehn Prozent. Auch E-Kerosin wird nur eines von vielen - dann ebenfalls synthetischen - Endprodukten des Verarbeitungsprozesses sein. Dazu kommt: Alle Koppelprodukte müssen vermarktbar sein. Bei synthetischen Kraftstoffen führen dagegen die bislang noch vergleichbar höheren Kosten in Anlagen zur Synthese der E-Crudes dazu, dass sie für die Luftfahrtunternehmen teurer sind und damit im unregulierten Wettbewerb de facto unverkäuflich wären. Eine möglichst kostengünstige Herstellung von E-Kerosin wäre nur erreichbar, wenn alle gewonnenen Koppelprodukte im Markt abgesetzt werden können. Das wird nur erreicht, wenn der gesamte Straßenverkehr ebenfalls adressiert wird.

Quellen: Frontier Economics (2021+2022), BMWK / Frontier (2022), IEA (2023) Agora Verkehrswende (2023), Lufthansa Group (2023)

AUSPUFFDENKEN STATT KLIMAWIRKLICHKEIT

WARUM DIE EU IHRE CO₂-MESSMETHODEN MODERNISIEREN MUSS

Die EU steckt beim Klimaschutz im Straßenverkehr im Auspuffdenken fest. Noch immer zählt in der Flottenregulierung ausschließlich, was während der Fahrt aus dem Endrohr kommt – die Herkunft der Energie oder ihre tatsächliche CO₂-Bilanz bleiben unberücksichtigt. Experten sehen darin einen eklatanten Rechtsbruch und Denkfehler. Die Methode benachteilige E-Fuels, verhindere Investitionen und bremse so den Klimaschutz.

enn es um Klimaschutz im Straßenverkehr geht, interessiert den europäischen Gesetzgeber bislang nur, was während der Fahrt am Auspuff herauskommt. Die CO₂-Flottengrenzwerte für neue Pkw, leichte Nutzfahrzeuge aber auch LKW beruhen auf dem sogenannten Tailpipe-Ansatz. Er betrachtet allein die Emissionen im Fahrbetrieb, also vom "Tank zum Rad", und blendet unter anderem die Herkunft der Antriebsenergie und ihre CO₂-Bilanz vollständig aus.

Experten bewerten diese $\rm CO_2$ -Bilanzierungsmethodik im Rahmen der EU-Flottenregulierung als unionsrechtsrechtswidrig. Zu diesem Schluss kam etwa ein Rechtsgutachten von Professor Martin Kment von der Universität Augsburg im Jahr 2023. Sie benachteilige Hersteller erneuerbarer Kraftstoffe, bremse Investitionen in deren Produktionshochlauf aus und schade damit dem Klimaschutz. "Die veraltete Messmethodik widerspricht dem europäischen Primärrecht und schädigt Ökologie und Ökonomie gleichermaßen. Sie sollte umgehend aus dem Rennen genommen werden", fordert der renommierte Europarechtler.

"E-Fuels, die anders als fossile Kraftstoffe nicht CO_2 emittieren, sondern im Gegenteil auf einer Bilanzneutralität beruhen, sind gleichwohl CO_2 -neutral. Die ökologisch interessanten, technischen Merkmale von E-Fuels kommen im Rahmen der Flottenregulierung nicht zum Tragen, wenn man sie ausschließlich anhand ihrer Auspuffemissionen beurteilt", so der Wissenschaftler.

Ein verzerrtes Bild der Wirklichkeit

Der Tailpipe-Ansatz führt zu einem verzerrten Bild der Wirklichkeit: Ein Elektroauto gilt dem Gesetzgeber bilanziell stets als emissionsfrei, selbst wenn es mit Koheingestuft
erneuerbar
geber ist ei
der verwer
fossilen Qu
der EU bev
den Hochl
letztlich de

Weichenst

Prof. Dr. Martin Kment, LL.M.

Lehrstuhl für Öffentliches Recht, Europarecht, Umwelt- & Planungsrecht, Uni Augsburg, hat sich in einem Gutachten mit dem Tailpipe-Ansatz beschäftigt.

lestrom geladen wird. Schließlich hat es keinen Auspuff, aus dem während der Fahrt CO_2 emittiert werden kann. Ein Verbrenner wird dagegen per se als CO_2 -intensiv eingestuft – auch dann, wenn er real CO_2 -neutral mit erneuerbaren Kraftstoffen betrieben wird. Dem Gesetzgeber ist es schlicht egal, ob die Antriebsenergie bzw. der verwendete Kraftstoff aus erneuerbaren oder aus fossilen Quellen stammt. Diese verengte Perspektive der EU bevorzugt einseitig die Elektromobilität, hemmt den Hochlauf erneuerbarer Kraftstoffe und schadet letztlich dem Klimaschutz.

Weichenstellung für 2026

Politisch rückt das Thema inzwischen immer stärker in den Fokus. Im Rahmen des anstehenden Reviews der CO₂-Flottenverordnung prüft die Europäische Kommission, wie alternative Kraftstoffe in die Flottenregulierung integriert werden können. Denkbar ist eine Anerkennung CO₂-neutraler Kraftstoffe durch anrechenbare CO₂-Gutschriften, die Einführung eines verifizierten Fuel-Credit-Systems oder die Abschaffung des Tailpipe-Prinzips zugunsten einer CO₂-Bilanzierungsmethodik über den gesamten Lebenszyklus eines Kraftfahrzeugs und dessen Antriebsenergie. Der Vorteil: die verschiedenen technologischen Pfade zur Defossilisierung des Straßenverkehrs würden fair verglichen, sie könnten auf dieser Basis und nach marktwirtschaftlichen Kriterien ihre Beiträge zum Klimaschutz leisten.

Kment warnt außerdem: "Eine veraltete und nicht mehr zeitgemäße Messmethodik läuft zwangsläufig Gefahr, den heutigen umweltrechtlichen und umweltwissenschaftlichen Anforderungen nicht zu entsprechen, Fehleinschätzungen zu begünstigen und so Fehlanreize zu setzen." Tatsächlich starten Elektroautos mit einem großen " CO_2 -Rucksack", weil die Batterieherstellung sehr energieintensiv ist. Laut Fraunhofer ISI verursacht allein die Produktion einer mittelgroßen Batterie mehrere Tonnen CO_2 – je nach Strommix bis zu 150 Gramm zusätzlich pro gefahrenem Kilometer. Damit kann ein Elektroauto in der Herstellung zunächst sogar klimaschädlicher sein als ein Verbrenner

Ein Blick über Europas Grenzen lohnt

Andere Länder sind bereits weiter und orientieren sich längst an der gesamten Klimawirkung: In Japan ist das

Well-to-Wheel-Prinzip regulatorischer Standard, Australien berücksichtigt bei seinen Klimaberichten zunehmend auch die Vorkettenemissionen, und Chile macht die vollständige Lebenszyklus-Bilanzierung bereits zur Grundlage seiner Exportstrategie für grünen Wasserstoff und E-Fuels.

Selbst in den USA gibt es in einzelnen Bundesstaaten Fuel-Credit-Systeme, die den Einsatz alternativer Kraftstoffe finanziell belohnen. Und auch die EU berücksichtigt in anderen Bereichen bereits die gesamte CO₂-Emissionskette, etwa bei der Produktion von Biokraftstoffen sowie im Rahmen der EU-Batterieverordnung.

Klimawirklichkeit statt
Auspuffdenken: Nur
wenn auch die Herkunft
der Energie berücksichtigt
wird, entsteht ein realistisches Bild der CO₂-Bilanz.

29

Derzeitige Gesetzgebung fokussiert auf tank-to-wheels Emissionen

Die EU bewertet Fahrzeuge bislang ausschließlich nach den Emissionen im Fahrbetrieb ("Tank-to-Wheel"). Dabei bleiben Herkunft und gesamte Klimabilanz der eingesetzten Energie unberücksichtigt. Ein Elektroauto wird dadurch automatisch als emissionsfrei eingestuft, während ein Verbrenner als CO_2 -intensiv gilt, auch wenn er mit erneuerbaren Kraftstoffen fährt.

DIE NEUE ABHÄNGIGKEIT

EUROPAS ENERGIEWENDE UND CHINAS ROHSTOFFMACHT

Lithium, Nickel, Mangan, Kobalt und Graphit zählen zu den zentralen Rohstoffen für Lithiumlonen-Batterien von Elektrofahrzeugen. Für den Antriebsstrang werden zusätzlich Seltene Erden wie Neodym, Dysprosium und Praseodym benötigt. Der Materialbedarf ist hoch: Je nach Akkugröße stecken in einem Elektroauto bis zu zehn Kilogramm Kobalt, bis zu 13,5 Kilogramm Lithium und 80 Kilogramm Kupfer – letzteres wird auch für die Ladeinfrastruktur von E-Autos gebraucht. Führt Europas Fokus auf die Elektrifizierung im Rahmen der Energiewende zu neuen Rohstoffabhängigkeiten?

COBALT KUPFER LITHIUM NICKEL

COBALT CU

COBALT CU

COBALT CU

27

COBALT CU

a die Basisrohstoffe für Elektrofahrzeuge in Deutschland und Europa kaum verfügbar sind, sind Autohersteller auf Importe angewiesen. Doch die Bezugsquellen sind stark konzentriert: Über die Hälfte der Rohstoffe zur Herstellung von E-Autos wird in China verarbeitet, bei Seltenen Erden liegt der Anteil bei bis zu 90 Prozent. Das Land fördert rund 70 Prozent der weltweit gewonnenen Seltenen Erden und verarbeitet bis zu 65 Prozent der Metalle Kobalt, Kupfer, Lithium und Nickel.

Darüber hinaus dominiert China die gesamte Lieferkette für E-Auto-Batterien – von der Rohstoffförderung über die Verarbeitung bis hin zur Fertigung. Rund drei Viertel der weltweiten Produktionskapazitäten für Batteriezellen liegen in China. Bei Kathoden- und Anodenmaterialien entfallen 70 Prozent beziehungsweise 85 Prozent der globalen Produktion auf das Land. Auch die Weiterverarbeitung von Lithium, Kobalt und Graphit findet größtenteils in China statt. Besonders auffällig ist die Rolle beim Graphit: Mit rund 70 Prozent des weltweiten Abbaus und über 90 Prozent der Verarbeitung kontrolliert China praktisch die gesamte Anoden-Liefer-

kette. Damit sichert sich das Land nicht nur die Rohstoffe, sondern auch die entscheidenden industriellen Verarbeitungsschritte - ein strategischer Vorteil im globalen Wettbewerb. Vor diesem Hintergrund gewinnt die Frage an Bedeutung, wie die Energiewende in Europa erfolgreich gestaltet werden kann, ohne neue Abhängigkeiten zu schaffen.

Während der Fokus auf die Elektrifizierung und damit unter anderem auf Batterien die Bindung an wenige Zulieferländer festigt, würde die verstärkte Nutzung sogenannter "grüner Moleküle" zusätzliche Optionen eröffnen. Bereits der globale Power-to-X-Atlas des Fraunhofer-Instituts für Energiewirtschaft und Energiesystemtechnik (IEE) im Jahr 2021 wies auf erhebliche Potenziale in vielen verschiedenen Regionen für die Produktion von grünem Wasserstoff sowie synthetischen Kraft- und Brennstoffen aus erneuerbaren Energien hin. Bemerkenswert: 80 Prozent der weltweit identifizierten Potenzialflächen zur Produktion von Power-to-X-Produkten – also Synthese-Kraftstoffe, Gase und chemische Rohstoffe – sind breit verteilt auf zehn Länder. "Die größten PtX-Potenziale zeigen sich in den Vereinigten

China fördert heute bis zu

70%

der weltweit gewonnenen Seltenen Erden. Russland", so die Analyse. Weiter heißt es: "Besonders groß ist das Exportpotenzial in Ländern wie Australien und den USA – sie bieten sehr gute räumliche und meteorologische Bedingungen, um große Mengen an PtX-Energieträgern produzieren zu können. Zudem sind sie politisch stabil und bieten einen verlässlichen Investitionsrahmen." Aber auch näher an Europa liegende Staaten, wie Ägypten und Libyen sind prinzipiell in der Lage, große PtX-Volumina liefern zu können.

Staaten, gefolgt von

Australien, Argentinien und

Während der bisherige Fokus Europas auf einen "all electric"-Ansatz die europäischen Lieferketten eng an einzelne Staaten bindet, würde der Einbezug von Importen grüner Moleküle die Möglichkeit bieten, mit internationalen Energiepartnern aus vielen Ländern die Energiewende global ausgerichtet zu gestalten. Zudem ließen sich mit Technologieoffenheit einzelne Rohstoffabhängigkeiten von nur wenigen Staaten wie China vermeiden.

Luftaufnahme des Roten Landes in Yunnan, China eine Region mit wichtigen Vorkommen Seltener Erden.

Globaler Power-to-X-Potenzialatlas: Standorte, Produktionsmengen und Kosten erneuerbarer Kraftstoffe im Überblick

Wofür welche Seltenen Erden gebraucht werden

Seltene Erden sind entscheidend für die Elektro-Mobilität, da sie in Batterien und Magneten hohe Leistung und Effizienz ermöglichen. Ohne diese Metalle wären moderne E-Autos kaum realisierbar.

Bestandteil von Katalysatoren & Poliermitteln, in Batterien nachrangig

Samarium-Cobalt-Magnete für Motoren unter extremer Hitze, auch in Luftfahrt & Rüstung

Starke Permanentmagnete in fast allen E-Motoren entscheidend für Leistung & Reichweite

Verbessert Batteriematerialien, Speziallegierungen & Sensoren, Einsatz in Kühltechnologien

Stabilisiert Magnete, erhöht die Temperaturbeständigkeit von Antrieben

31

GLOBALE WEGE ZUR DEFOSSILISIERUNG DES STRASSENVERKEHRS

VERBOTE IN EUROPA - TECHNOLOGIEOFFENHEIT ANDERSWO

Ob Credits in der Schweiz, Quoten in Großbritannien oder Milliarden-Investitionen in China: Während die großen Automärkte bei der Defossilisierung auf Vielfalt und Pragmatismus setzen, hat die EU mit ihrem Verbrenner-Aus einen Sonderweg eingeschlagen.

ie Defossilisierung des Straßenverkehrs ist längst auch zu einem geopolitischen Wettbewerbsthema geworden. Während die EU mit einem fixen Enddatum den Verbrennungsmotor de facto verbieten möchte, verfolgen andere Weltregionen unterschiedliche Wege - von Quotenregelungen über Credit-Systeme bis zu großen Investitionen in Wasserstoff und E-Fuels. Besonders China droht Europa auch bei synthetischen Kraftstoffen zu überholen: Dort entstehen bereits dutzende Großprojekte, während Europa noch über Regulierungsfragen debattiert. Der Blick nach China, Japan, Korea, den USA, der Schweiz und Großbritannien zeigt: Antriebsvielfalt und Pragmatismus prägen vielerorts die Politik, während Europa Gefahr läuft, sich auf eine einzige Technologie festzulegen.

Europa: Regulierung durch Verbot

Die EU hat beschlossen, dass ab 2035 nur noch lokal emissionsfreie Pkw neu zugelassen werden dürfen. Zwar hat man sich langem Ringen auf die Möglichkeit einer Ausnahme für Fahrzeuge geeinigt, die ausschließlich mit CO₂-neutralen Kraftstoffen betrieben werden können - doch fehlen bis heute die nötigen delegierten Rechtsakte der EU-Kommission zur Schaffung einer neuen Fahrzeugkategorie. De facto bleibt es damit bei einem pauschalen Aus für alle neuen Pkw und leichte Nutzfahrzeuge mit Verbrenner. Zunächst richteten sich die Hersteller deshalb fast vollständig auf Elektrifizierung aus, inzwischen deutet sich ein Kurswechsel an:

China Größter Automarkt der Welt: Über 90 % des Bestands sind Verbrenner. Parallel entstehen rund 30 neue E-Fuels-Großprojekte.

USA Quoten und Credits statt Verbote: In Kalifornien stammen bereits 65 % des Diesels aus erneuerbaren Quellen.

Großbritannien Bis 2030 sollen 80 % E-Autos Pflicht sein. Zertifikate sichern Spielraum für alternative Kraftstoffe.

Japan Der Verbrenner bleibt Alltag. Parallel Milliarden-Investitionen in Wasserstoff und synthetische Kraftstoffe.

Südkorea Kein Verbrennerverbot: Hyundai und Kia produzieren klassische Antriebe – ergänzt um E-Autos und Wasserstoff.

Schweiz Kein Verbrennerverbot - stattdessen Crediting-System: CO₂-Gutschriften für klimafreundliche Moleküle im Tank.

Chile Haru Oni liefert erste Mengen synthetischen Benzins – Leuchtturmprojekt für den globalen E-Fuels-Markt.

Australien Neue Effizienzstandards, aber kein Verbrennerverbot. Parallel Positionierung als Exporteur grüner Moleküle.

Hintertreffen zu geraten. Die Kommission hat für 2026 eine Überprüfung der Flottenregulierung angekündigt. Damit rückt die Möglichkeit wieder näher, E-Fuels als CO₂-neutralen Pfad zu integrieren – und Europa von seiner einseitigen Elektrifizierungsstrategie abzubringen.

Großbritannien: Quoten und Zertifikate

Mit dem sogenannten ZEV-Mandat verpflichtet die britische Regierung die Hersteller, bis 2030 mindestens 80 Prozent emissionsfreie Neuwagen zu verkaufen, ab 2035 sogar 100 Prozent. "Emissionsfrei" bedeutet dabei "lokal emissionsfrei": keine Auspuffemissionen - also Batterie- oder Brennstoffzellenfahrzeuge. Hybride gelten nicht als ZEV und müssen über Zertifikate ausgeglichen werden. Noch aber dominieren klassische Antriebe: 2024 entfielen gut 52 Prozent der Neuzulassungen auf Benziner, sechs Prozent auf Diesel, und nur 19,6 Prozent auf reine E-Autos. Gleichzeitig sorgt die Renewable Transport Fuel Obligation dafür, dass HVO, Biomethan und künftig synthetische RFNBO-Kraftstoffe über handelbare Zertifikate im Markt angerechnet werden können. Damit öffnet sich Großbritannien der Option, auch Verbrenner CO₂-neutral weiterzuentwickeln.

Schweiz: Crediting-System statt Verbrennerverbot

Die Schweiz verzichtet bewusst auf ein pauschales Verbrennerverbot und setzt stattdessen auf marktwirtschaftliche Mechanismen. Jeder Liter fossiler Treibstoff, der ins Land importiert wird, verpflichtet den Importeur zur CO₂-Kompensation. Dazu haben sich die Mineralölimporteure in der Stiftung KliK zusammengeschlossen. Sie bündelt Gelder der Branche und finanziert Klima-

Jede importierte

Tonne

fossiler Treibstoffe in die Schweiz muss durch CO₂-Gutschriften kompensiert werden. schutzprojekte oder den Einsatz erneuerbarer Kraftstoffe wie Biogas, HVO oder künftig auch E-Fuels. Hier greift das Crediting-System: Jede eingesparte Tonne CO₂ wird als Gutschrift angerechnet und mindert die gesetzliche Kompensationspflicht. So wird der Verbrenner nicht verboten, sondern Schritt für Schritt klimafreundlicher – je höher der Anteil erneuerbarer Moleküle im Tank, desto besser die Bilanz. Parallel sind Biokraftstoffe steuerlich begünstigt.

USA: Credits statt Verbote

In den USA waren drei Viertel aller Neuwagen auch 2024 noch reine Verbrenner. Ein fixes Ausstiegsdatum gibt es nicht. Stattdessen setzt die US-Politik auf marktorientierte Mechanismen. Auf Bundesebene verpflichtet der Renewable Fuel Standard Importeure, jährlich steigende Mengen Biokraftstoffe in den Markt zu bringen, der Nachweis erfolgt über handelbare RIN-Credits. Einzelne Bundesstaaten wie Kalifornien, Oregon oder Washington gehen noch weiter: Sie haben Low Carbon Fuel Standards eingeführt, die den Einsatz klimafreundlicher Moleküle direkt belohnen. In Kalifornien etwa stammt inzwischen rund 65 Prozent des gesamten Stra-Bendiesels aus erneuerbaren Quellen. Kalifornien hat sein ursprünglich geplantes Verbrennerverbot sogar wieder zurückgenommen - zugunsten eines flexibleren Systems, das auf Quoten und Credits setzt.

China: Rekordverbrenner und neue E-Fuels-Projekte China bleibt der größte Automobilmarkt der Welt – und trotz aller Elektro-Offensiven dominieren weiterhin Verbrenner. 2024 waren knapp 60 Prozent aller Neuwagen

klassische Benziner oder Diesel, im Bestand von rund 350 Millionen Pkw liegt der Verbrenneranteil laut CPCA sogar über 90 Prozent. Dieses riesige Marktvolumen ist der Grund, warum Peking parallel zur Elektromobilität auch massiv in E-Fuels investiert. Derzeit entstehen rund 30 Großprojekte für synthetische Kraftstoffe, vor allem klimaneutrales Methanol. Eine der größten Anlagen wird in Anyang (Provinz Henan) gebaut und soll jährlich rund 110.000 Tonnen produzieren. Auffällig ist, dass China E-Fuels nicht nur als Lösung für den Bestand betrachtet, sondern sie ausdrücklich auch für künftige Neufahrzeuge in den Markt bringen will. Damit fährt China eine Doppelstrategie: Einerseits baut es seinen Vorsprung bei Elektroautos konsequent aus - andererseits sichert es sich durch E-Fuels die Option, den riesigen Verbrennerbestand und künftige Neuzulassungen CO₂-neutral weiterzuentwickeln.

Japan: Technologische Vielfalt

Japan setzt weiterhin auf technologische Vielfalt und einen abgestuften Übergang. Offiziell ist das Ziel, bis 2035 alle Neuwagen "elektrifiziert" anzubieten - dazu zählen neben reinen Elektroautos auch Plug-in-Hybride und Vollhybride. Reine BEVs spielten 2024 mit unter drei Prozent der Neuzulassungen noch eine Nebenrolle, während Hybride mit über 40 Prozent dominierten. Parallel investiert die Regierung mehr als 15 Milliarden US-Dollar in eine Wasserstoffwirtschaft und will bis 2030 rund 1.000 Wasserstofftankstellen errichten. Zugleich werden synthetische Kraftstoffe ausdrücklich als Teil der Strategie betrachtet: Schon Anfang der 2030er-Jahre sollen sie in den Markt eingeführt werden.

Südkorea: Pragmatismus und Technologieoffenheit

Südkorea verbindet Exportorientierung mit technologischem Pragmatismus. Das Land hat bewusst auf ein fixes Enddatum für den Verbrenner verzichtet. Statt Verboten setzt die Regierung auf eine Mischung aus Effizienzstandards, CO₂-Flottenzielen und gezielten Förderprogrammen. Für die exportorientierte Industrie bedeutet das maximale Flexibilität: Hyundai und Kia können weiterhin klassische Antriebe und Hybride produzieren, parallel aber auch neue Technologien entwickeln. 2023 rollten insgesamt 3,7 Millionen Fahrzeuge aus koreanischen Werken, davon rund 13 Prozent Elektroautos. Für den heimischen Markt heißt das: Der Verbrenner bleibt erhalten, soll aber zunehmend durch CO₂-neutrale Kraftstoffe angetrieben werden.

Australien & Chile: Exporteure grüner Moleküle

Australien verzichtet auf ein Verbrennerverbot, hat aber zu Jahresbeginn 2025 erstmals Effizienzstandards für Pkw und leichte Nutzfahrzeuge eingeführt. Das New Vehicle Efficiency Standard (NVES) schreibt den Herstellern CO₂-Grenzwerte für ihre Flotten vor. Die Vorgaben steigen schrittweise bis 2030 an, wodurch sich der Druck zur Einführung effizienterer Antriebe erhöht allerdings ohne ein faktisches Aus für den Verbrenner. Parallel positioniert sich Australien als Exporteur grüner Moleküle: Wasserstoff und Ammoniak sollen in großem Stil nach Japan, Korea und Europa geliefert werden. Chile setzt dagegen auf E-Fuels. Das Pilotprojekt Haru Oni in Patagonien produziert seit Ende 2022 erste Mengen synthetischen Benzins und Dieselersatzes, die unter anderem von Porsche für Tests genutzt werden.

In den USA waren 2024 noch 75 % aller Neuwagen reine Verbrenner ein fixes Ausstiegsdatum gibt es nicht.

eFuel Alliance

Mit eFuels aus dem europäischen Klima-Dilemma

78 % aller Autofahrer wollen CO₂-neutrale eFuels tanken.* eFuels können heute und in Zukunft weltweit klimaneutral genutzt werden. Synthetische Kraftstoffe sind ein Weg aus dem europäischen Energie-Dilemma, können helfen, die Importabhängigkeit von Russland zu verringern und mit ihnen kommen wir den ambitionierten Klimazielen näher.

Vorteile von eFuels:

- sind in vielen Anwendungsfeldern der Mobilität aber auch der Industrie anwendbar
- sofort in allen Bestandsfahrzeugen mit Verbrennungsmotor einsetzbar Verbrenner können langfristig CO₂- neutral betrieben werden
- Bestehende Tankstellen-Infrastruktur kann genutzt werden
- Ein Ausstieg aus dem Verbrennungsmotor wäre nicht zwingend notwendig
- Ende der Abhängigkeit von fossilen Brennstoffen, auch aus Russland
- können kostengünstig dort hergestellt werden, wo es Sonne und Wind im Überfluss gibt

Die eFuel Alliance ist eine Interessensgemeinschaft aus 180 Unternehmen, die sich für die industrielle Produktion von synthetischen Kraftstoffen aus erneuerbaren Energien einsetzt. Ziel der Initiative ist die Anerkennung von eFuels als wesentlicher Baustein einer europäischen, technologieoffenen Klimaschutzpolitik.

www.efuel-alliance.eu